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We show that the strong Nernst effect observed recently in amorphous superconducting films far above the
critical temperature is caused by the fluctuations of the superconducting order parameter. We employ the
quantum kinetic approach �K. Michaeli and A. M. Finkel’stein, Phys. Rev. B 80, 115111 �2009�� for the
derivation of the Nernst coefficient. We present here the main steps of the calculation and discuss some subtle
issues that we encountered while calculating the Nernst coefficient. In particular, we demonstrate that in the
limit T→0 the contribution of the magnetization ensures the vanishing of the Nernst signal in accordance with
the third law of thermodynamics. We obtained a striking agreement between our theoretical calculations and
the experimental data in a broad region of temperatures and magnetic fields.
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I. INTRODUCTION

After many years in the shade, the Nernst effect �the
transverse thermoelectric signal� entered the spotlight in
condensed-matter physics as well as other fields of research,
such as the theory of gravitation.1,2 The “rediscovery” of the
Nernst effect by the condensed-matter community occurred
after the measurement of the effect in high-Tc materials
above the superconducting transition temperatures.3,4 Since
then, the Nernst effect was also observed in conventional
amorphous superconducting films far above Tc.

5,6 The Nernst
effect in high-Tc superconductors3,4 has been attributed to the
motion of vortices7–9 existing even above Tc �the vortex-
liquid regime�. In conventional amorphous superconducting
films the strong Nernst signal observed deep in the normal
state5,6 cannot be explained by the vortexlike fluctuations.
Rather, the authors of Refs. 5 and 6 suggested that the effect
is caused by fluctuations of the superconducting order pa-
rameter. Here we present a comprehensive analysis of this
mechanism using the quantum kinetic technique and demon-
strate a quantitative agreement between the theoretical ex-
pressions and the experiment.6 No fitting parameters have
been used; the values of Tc and the diffusion coefficient were
taken from independent measurements �see Refs. 5 and 6�. In
particular, we succeeded in reproducing the nontrivial depen-
dence of the signal on the magnetic field. Our results imply
that in the quest for understanding the thermoelectric phe-
nomena in high-Tc materials the fluctuations of the order
parameter should not be ignored.

The Nernst effect and its counterpart, the Ettingshausen
effect, are effective tools for studding the superconducting
fluctuations because in metallic conductors the contribution
of the quasiparticle excitations is negligible. the approxima-
tion of a constant density of states at the Fermi energy, which
is a standard approximation for the Fermi-liquid theory, this
contribution vanishes completely.10 On the other hand, the
collective modes describing all kinds of fluctuations can, in
general, generate significant contributions to the Nernst ef-
fect. Since the neutral modes are not deflected by the Lorentz
force, they do not contribute to the transverse thermoelectric
current. The charged modes, such as fluctuations of super-

conducting order parameter, are a possible source for the
giant Nernst effect even far from the superconducting transi-
tion. The fact that the main contribution to the Nernst signal
originates from the superconducting fluctuations is in con-
trast to other transport phenomena such as the electric con-
ductivity. The contributions to the electric conductivity
caused by the superconducting fluctuations
�paraconductivity11–13� can be observed close enough to the
superconducting transition where the paraconductivity in-
creases rapidly and may even overcome the Drude conduc-
tivity. Far from the transition the superconducting fluctua-
tions produce only one among many corrections to the
conductivity and, therefore, can hardly be identified. Owing
to the fact that in the absence of fluctuations the Nernst effect
is negligible, measurements of the Nernst signal provide a
unique opportunity to study the superconducting fluctuations
deep inside the normal state.

The transport coefficients for the electric and thermal cur-
rents are defined via the standard conductivity tensor,

�je

jh
� = ��̂ �̂

�̂̃ �̂
�� E

− �T
� . �1�

When thermomagnetic phenomena are studied in films �or
layered conductors� the magnetic field is conventionally di-
rected perpendicularly to the conducting plane, see Fig. 1.
Then, each element of the conductivity tensor corresponds to

V

T1 T2

H

z

x
y

T

∆

FIG. 1. The setup of the Nernst effect measurement. The sample
is placed between two thermal baths of different temperatures. The
temperature gradient is in the x direction, the magnetic field is along
the z direction and the electric field is induced in the y direction.
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a 2�2 matrix describing the conductivity components in the
x-y plane �see Fig. 1�. The different components of the con-
ductivity tensor are connected through the Onsager relations.
In particular, �ij�H�=� ji�−H� and �̃ij�H�=T� ji�−H�. In an
open circuit setup, one gets from the condition je=0 that the
Nernst coefficient is

eN =
Ey

− �xT
=
�xx�xy − �xy�xx

�xx
2 + �xy

2 . �2�

We checked that the second term in the numerator is negli-
gible in comparison to the first one �see the comment below
Eq. �42a��. This observation has been experimentally verified
as it follows from Fig. 2�a� in Ref. 5. Therefore, the leading-
order term in the expression for the Nernst coefficient is eN
��xy /�xx and our goal is to find the transverse Peltier coef-
ficient, �xy.

The electric current generated as a response to an external
force, such as the electric field, can be found in the linear
regime by the Kubo formula14 which expresses the response
in terms of a corresponding correlation function. Extending
the Kubo formalism to the calculation of the response to a
temperature gradient is not trivial because this gradient is not
directly connected to any mechanical force. Following the
scheme used in the derivation of the Einstein relation,
Luttinger15 made a connection between the responses to a
temperature gradient and to an auxiliary gravitational field.
As a result, Luttinger succeeded in relating all transport co-
efficients with various current-current correlation functions.
A main ingredient in the Kubo formula is the quantum-
mechanical expressions for the current operators that enter
the correlation function, e.g., the electric and heat currents in
case of the thermoelectric transport. When the electron-
electron interactions are neglected, the expression for the
heat current operator is

jh�q = 0,�� = �
p,�

��p

�p
��p − 	�cp,�

† ���cp,����

+ �
p,p�,�

��p

�p
Vimp�p,p��cp,�

† ���cp�,���� , �3�

where cp,�
† ��� �cp,����� is the creation �annihilation� operator

of an electron in a state with energy �p. Here 	 is the chemi-
cal potential, Vimp�p ,p�� is the potential created by the dis-
order and � is the imaginary time. With the help of the equa-
tions of motion and after transforming to the Matsubara
frequencies, the current operator can be written as16

jh�q = 0,
n� = �
p,�n,�

��p

�p

2i�n − i
n

2
cp,�

† ��n�cp,���n − 
n� .

�4�

When electron-electron interactions are included, jh is a
more complicated function �it contains terms with four fer-
mion operators�. In general, the resulting expression for the
heat

current is not just the frequency multiplied by the velocity as
it is for free electrons. Unfortunately, very often the expres-
sion for the heat current of free electrons presented in Eq. �4�
is used in the presence of electron-electron interactions,
when there is no real justification for it. In Appendix B of
Ref. 17 we showed that this simplified form of the Kubo
formula fails to reproduce the known result for the thermal
conductivity of Fermi liquids. The incorrect result that
emerges from Eq. �4� does not imply that the use of the Kubo
formula for the thermal transport coefficients is necessarily
wrong. The weak point is in replacing the full expression for
the heat current by the one in Eq. �4�. The problem with the
full expression for the heat current is in its complexity.

In addition, the Kubo formalism meets with some diffi-
culties when the thermoelectric currents are considered in the
presence of a magnetic field. Obraztsov18 pointed out that
when a magnetic field is applied, the heat current describing
the change in the entropy must include a contribution from
the magnetization. This is because the thermodynamic ex-
pression for the heat contains the magnetization term. Thus,
additional problem of the Kubo formula is that the current
cannot be expressed entirely by a correlation function. In
order to determine the transverse thermoelectric currents one
needs to combine the quantum mechanical response to the
external field with the magnetization, which is a thermody-
namic quantity.18–20

In the derivation of the thermoelectric currents we de-
cided, instead of applying the Kubo formula, to employ a
different approach and to use the quantum kinetic
equation.21–23 One main advantage of the quantum kinetic
approach is that the problem of the magnetization current is
solved straightforwardly. We directly obtained the expression
for the thermoelectric current which includes the magnetiza-
tion current. In this way, the electric current generated by the
temperature gradient can be related to the flow of entropy.
Therefore, according to the third law of thermodynamics the
Nernst signal must vanish at T→0.24 As we will see, this
argument imposes a strict constraint on the magnitude of the
Peltier coefficient in a broad range of temperatures. Note that
the calculation of the thermoelectric transport using the ki-
netic equation also allows a direct verification of the Onsager
relations between the off-diagonal components of the con-
ductivity tensor �see Appendix A�.

The paper is organized as follows: in Secs. II and III we
present the main steps in the derivation of the electric current
as a response to a temperature gradient in the presence of
fluctuations of the superconducting order parameter using the
quantum kinetic equation. Then, in Secs. IV and V we give
details of the calculation that are specific to the transverse
current. We devote Sec. VI and Appendix B to the contribu-
tion of the magnetization current to the transverse thermo-
electric current. We demonstrate that the magnetization cur-
rent ensures the vanishing of the Peltier coefficient in the
limit T→0. This makes the Nernst signal compatible with
the third law of thermodynamics. The result of the calcula-
tion of the Nernst effect and comparison with the Nernst
signal measured in amorphous superconducting films6 are
presented in Sec. VII. The content of Sec. VII has already
been published25 as a separate letter; we include it here for
completeness. In Appendix A we demonstrate that the two
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off-diagonal coefficients of the conductivity tensor that are
found independently using the quantum kinetic approach sat-
isfy the Onsager relations, �ij�B�=T�̃ ji�−B�. In view of the
frequently used argument that the particle-hole symmetry
limits the magnitude of the Nernst effect �see, e.g., Ref. 26�
we discuss this issue in Appendix C. We demonstrate that the
value of the Nernst coefficient is not constrained by the
particle-hole symmetry. Rather, the contribution from the
quasiparticle excitations is zero when their density of states
is taken to be constant, which is often confused with the
particle-hole symmetry.

II. QUANTUM KINETIC EQUATION ABOVE Tc IN THE
PRESENCE OF A TEMPERATURE GRADIENT

In this paper we extend the scheme developed in Ref. 17
to the case of electrons interacting with superconducting
fluctuations in the presence of a magnetic field. Here we
describe the system using two fields; one is the quasiparticle
field � while the other represents the fluctuations of the su-
perconducting order parameter . The matrix functions

Ĝ�r , t ;r� , t�� and L̂�r , t ;r� , t�� written in the Keldysh
form21–23 describe the propagation of these two fields, re-
spectively. Throughout the paper, we work in the basis of the
retarded, advanced, and Keldysh propagators,

Ĝ�r,t;r�,t�� = �GR�r,t;r�,t�� GK�r,t;r�,t��
0 GA�r,t;r�,t��

� , �5�

where a similar expression can be written for L̂. �Notice that
we use the term propagators when referring to both these

functions while separately we name Ĝ�r , t ;r� , t�� the quasi-

particle Green’s function and L̂�r , t ;r� , t�� the propagator of
the superconducting fluctuations.� The derivation of the
transport coefficients in the quantum kinetic equation is
separated into two steps. First, the propagators are found
using the quantum kinetic equations. Then, the expression
for the current in terms of the propagators is derived.

We now derive the quantum kinetic equations for the

propagators Ĝ and L̂ in the presence of a temperature gradi-
ent. Inspired by Luttinger,15 we introduce an auxiliary gravi-
tational field of the form ��r�=T0 /T�r� �where T0 is the con-
stant part of the temperature�. The purpose of the
gravitational field is to compensate for the nonuniform tem-
perature at the initial state. In other words, the temperature
gradient and the gravitational field are applied in such a way
that at t=−� the system is in equilibrium. Then, starting at
t=−�, the gravitational field is adiabatically switched off.
From the response to switching off the gravitational field, we
can learn about the effect of the temperature gradient on the
system �for more details see Ref. 17�. The general expression
for the action in the presence of a gravitational field ��r� and
a vector potential A�r� is

S =	 drdt��r�
�
�

 i

��r�
��

†�r,t�
�

�t
���r,t�

−
1

2m���−
ie

c
A�r����r,t��2

− Vimp�r�

��
�

��
†�r,t����r,t� −

�

2
��r,t���

†�r,t��−�
† �r,t� + H.c.��

−
��r,t��2

� � . �6�

Here � is the coupling constant of the interaction �we are
interested in the case of an s-wave coupling�. The choice of
signs is such that ��0 corresponds to an attractive interac-
tion. The spin index �=1�−1�, or equivalently ↑�↓ �, indi-
cates the spin direction up �down�. In the above equation and
throughout the paper we set �=1.

The Dyson equation for the Green’s function in the pres-
ence of the gravitational field is


i
�

�t
+

1

2m
��−

ie

c
A�r���r���−

ie

c
A�r�

− ��r��Vimp�r� − 	��Ĝ�r,t;r�,t��

= ��r − r����t − t��

+ ��r�	 dt1dr1�̂�r,t;r1,t1���r1�Ĝ�r1,t1;r�,t�� . �7�

In general, the Green’s function Ĝ and self-energy �̂ contain
spin indices. Since we do not consider scattering mecha-
nisms that flip the spins and ignore the Zeeman splitting,
here and in the following we do not indicate the spin indices
whenever it is possible. Next, we introduce the following
transformation:

Ŷ�r,t;r�,t�� = �−1/2�r�Ŷ
=

�r,t;r�,t���−1/2�r�� , �8�

where Ŷ can be either Ĝ or �̂. For the calculation of the
response to switching off the gravitational field in the linear
regime, we set ��r�=1+r ·�T /T0. Then, the quantum kinetic
equation for the Green’s function of the quasiparticles be-
comes


i�1 −
r · �T

T0
� �

�t
+

1

2m
��−

ie

c
A�r,t�2

− Vimp�r� + 	�Ĝ
=

�r,t;r�,t�� = ��r − r����t − t��

+	 dt1dr1�̂=�r,t;r1,t1�Ĝ
=

�r1,t1;r�,t�� . �9�

The dependence of this equation on the temperature gradient

is much simplified by the transformation to Ĝ
=

and �̂
=

because
�T /T0 was eliminated from all the terms in the equation
except the derivative with respect to time. In field theories
which include a nontrivial space-time metric ĝ the transfor-
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mation of the kind Y=�x ,x��=�−det ĝ�x�Y�x ,x���−det ĝ�x��
�where x is a 4-vector� is standard. The success of this trans-
formation in simplifying the quantum kinetic equation is due
to the relatively simple structure of the metric.

We write Eq. �9� in coordinate space because all the
propagators and self-energies that enter the kinetic equation
are not translationally invariant. There are three sources for
the lack of translation invariance. The first one is because the
propagators and self-energies depend on the magnetic field
through the vector potential, which is a function of the coor-
dinate. The second reason is due to the fact that we did not
yet perform the averaging over the disorder. Finally, and
most important, in the presence of a temperature gradient
�even in the absence of a magnetic field� the propagators
become functions of the center-of-mass coordinate.

We choose to postpone the averaging over impurities until
the last stage of the derivation of the current. Therefore, the
Green’s function of the quasiparticles contains open impurity
lines as illustrated in the two coupled equations presented in
Fig. 2,

Ĝ�r,t;r�,t�� = Ĝint�r,t;r�,t��

+	 dr1dt1Ĝint�r,t;r1,t1�Vimp�r1�Ĝ�r1,t1;r�,t�� ,

�10a�

Ĝint�r,t;r�,t�� = Ĝb�r,t;r�,t�� +	 dr1dt1dr2dt2Ĝb�r,t;r1,t1�

� �̂�r1,t1;r2,t2�Ĝint�r2,t2;r�,t�� . �10b�

Here, Ĝint�r , t ;r� , t�� is the Green’s function of interacting

electrons while Ĝb�r , t ;r� , t�� is free from both the interac-
tions and the scattering by impurities. Note that

Ĝint�r , t ;r� , t�� includes partially the scattering by impurities.
Next we write the quantum kinetic equation using the

center-of-mass coordinates for space and time, R= �r
+r�� /2 and T= �t+ t�� /2, and the relative space and time co-
ordinates, �=r−r� and �= t− t�. Since the gravitational field
is independent of time and we are interested in the steady-

state solution, the Green’s function will be taken to be inde-
pendent of T. On the other hand, the dependence of the
Green’s function on R remains because the temperature gra-
dient enters the equation as the product r ·�T= �R
+� /2� ·�T. This dependence on R is the main difference
between the response to a temperature gradient and the re-
sponse to an electric field. The point is that in the presence of
an electric field the quantum kinetic equation can be formu-
lated in such a way that the electric field enters only as a
product with the relative coordinate, �r−r�� ·E. Therefore,
after averaging over the disorder the electric field-dependent
Green’s function becomes translationally invariant.

In order to find the expression for the �T-dependent
Green’s function using the quantum kinetic equation, we
separate the Green’s function into three parts,

Ĝ
=

= ĝeq + Ĝloc-eq + Ĝ�T. �11�

The first part describes the propagation at equilibrium. The
retarded and advanced components of ĝeq are described by
Eq. �9� with �T=0,


� +
1

2m
��−

ie

c
A�R + �/2,t�2

− Vimp�R + �/2�

+ 	�geq
R,A��,�;A, imp�

−	 dr1�eq
R,A�� − r1,�;A, imp�geq

R,A�r1,�;A, imp� = ���� .

�12�

This is the usual Dyson equation for the Green’s function at
equilibrium in which we performed the Fourier transform of
the relative time �. In the above equation we introduced the
equilibrium self-energy, �̂eq. The Green’s function ĝeq de-
pends on the center-of-mass coordinate through the vector
potential and the potential Vimp created by the impurities at a
specific realization. Correspondingly, we use the notation
geq�� ,� ;A , imp� in which these dependencies on R are in-
corporated into A and imp. The gradient, �= 1

2�R+��, in the
equation for geq

R,A contains the derivatives with respect to both
R and �.

According to the standard rule, the Keldysh component of
the Green’s function at equilibrium can be written in terms of
the Fermi distribution function nF��� and the retarded and
advanced Green’s functions,

geq
K ��,�;A, imp� = �1 – 2nF�����geq

R ��,�;A, imp�

− geq
A ��,�;A, imp�� . �13�

In the presence of a uniform and constant in time mag-
netic field, the expressions given in Eq. �12� can be rewritten
as a product of the phase

= +

(a)

(b)

= +
G Gint

Σ

Gint G

Gint Gb Gb Gint{G,V}

FIG. 2. �a� Illustration of Eq. �10a� for the full Green’s function

Ĝ. �b� The Dyson equation for Ĝint �see Eq. �10b��. Note that Ĝint

includes scattering by impurities only through �̂�G� which is a

function of the full Green’s function Ĝ. The bare Green’s function,
i.e., free from the interactions and the scattering by impurities, is

denoted by Ĝb.
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exp�i
e

c
	

r�

r

A · �r1�dr1 = exp
− i
eB

4c
· ��r − r�� � �r + r����

�14�

and the gauge-invariant Green’s functions, ĝ̃. The retarded
and advanced components of ĝ̃ satisfy the equation,

�� +
1

2m
��− i

eB � �

2c
�2

− Vimp − �eq
R,A

�g̃eq
R,A��,�;imp� = ���� , �15�

where the product of the Green’s function and the self-
energy should be understood as a convolution in real space
�see Eq. �12��. In the following, the permeability is taken to
be 1 and correspondingly we will not distinguish between B
�the magnetic-flux density� and the magnetic field H. After
averaging over the disorder, the gauge-invariant Green’s
functions at equilibrium become translationally invariant,
i.e., functions of the relative coordinate � alone �see Ref. 27
and references therein�,

�� +
1

2m
� �2

��2 −
e2H2�2

4c2 � + 	�
i

2�
− �eq

R,A
g̃eq

R,A��,�� = ���� , �16�

where � is the elastic mean-free time of the electrons.
As we have already discussed, when we turn from the

equilibrium Green’s function to the �T-dependent Green’s
function, an additional dependence on the center-of-mass co-
ordinate appears. We wish to isolate this dependence on R
from the others. Similar to ĝeq�� ,� ;A , imp�, we denote the

dependencies of Ĝ
=

on the center-of-mass coordinate caused
by the impurity potential and the vector potential by imp and
A, respectively. Then, the remaining explicit dependence on

R in Ĝ
=

�R ;� ,� ;A , imp� arises due to the temperature gradi-
ent. Therefore, in the process of linearizing the equation in

�T /T0, we expand Ĝ
=

and �̂
=

in the collision integral with
respect to this explicit dependence on R. In other words, we
may write

	 dr1�̂=�R +
r1

2
;� − r1,�;A, imp�

�Ĝ
=�R −

� − r1

2
;r1,�;A, imp�

�	 dr1�̂=�R;� − r1,�;A, imp�Ĝ
=

�R;r1,�;A, imp�

+	 dr1
r1

2
·
��̂
=

�R;� − r1,�;A, imp�

�R
Ĝ
=

�R;r1,�;A, imp�

−	 dr1�̂=�R;� − r1,�;A, imp�
� − r1

2

·
�Ĝ
=

�R;r1,�;A, imp�

�R
. �17�

As we shall see below, the last two terms in the expansion
are actually proportional to �T /T0.

The equation for the local-equilibrium Green’s function is

	 dr1ĝeq
−1�� − r1,�;A, imp�Ĝloc-eq�R;r1,�;A, imp�

=	 dr1�̂loc-eq�R;� − r1,�;A, imp�ĝeq�r1,�;A, imp�

+
R · �T

T0
�ĝeq��,�;A, imp� . �18�

This equation is solved by

Ĝloc-eq�R;�,�;A, imp� = −
R · �T

T0
�
� ĝeq��,�;A, imp�

��
,

�19�

where the corresponding self-energy should be taken as

�̂loc-eq�R ;� ,� ;A , imp�=−�R ·�T /T0��� �̂eq�� ,� ;A , imp� /��.
We see that the local-equilibrium Green’s function is a
straightforward extension of the equilibrium Green’s func-
tion for a nonuniform temperature. Since the same holds for

�̂loc-eq, the equation for Ĝloc-eq is a closed equation deter-
mined by the equilibrium properties of the system.

The Green’s function Ĝloc-eq describes the readjustment of
quasiparticles to the nonuniform temperature when the sys-
tem is trying to maintain a local equilibrium. This response
of the electrons to the temperature gradient tends to induce
modulation of the density. Since for charged particles it is
impossible to have a large-scale charge modulation, the tem-
perature gradient transforms into a gradient of the electro-
chemical potential. Therefore, je= �̂�E−�	 /e�= �̂E�, where
the effective field E� is the one measured in experiments.

The role of the local-equilibrium Green’s function is most
peculiar when the response to the temperature gradient is
considered in the presence of a magnetic field. these condi-
tions, as we show in Secs. III and VI, Gloc-eq�R ;� ,� ;A , imp�
is responsible for the nonvanishing contribution to the elec-
tric current from the magnetization.

All the remaining terms in the quantum kinetic equation

determine the last term of the Green’s function, Ĝ�T,

	 dr1ĝeq
−1�� − r1,�;A, imp�Ĝ�T�R;r1,�;A, imp�

−
� · �T

2T0
�ĝeq��,�;A, imp�

+
1

2m
� �

��
−

ie

c
A�R + �/2� ·

�Ĝloc-eq�R;�,�;A, imp�
�R

=	 dr1�̂�T�R;� − r1,�;A, imp�ĝeq�r1,�;A, imp�

+	 dr1
r1

2
·
��̂loc-eq�R;� − r1,�;A, imp�

�R
ĝeq�r1,�;A, imp�

−	 dr1�̂eq�� − r1,�;A, imp�
� − r1

2
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·
�Ĝloc-eq�R;r1,�;A, imp�

�R
. �20�

In the above equation, the derivatives with respect to the
center-of-mass coordinate act only on the explicit depen-
dence of Ĝloc-eq�R ,� ,� ;A , imp� and �̂loc-eq�R ,� ,� ;A , imp�
on R �i.e., through the spatially dependent temperature�. Re-
call that the derivatives with respect to the center-of-mass
coordinate which act on Vimp and A in the local-equilibrium
Green’s function was already included in geq

−1 that appears in
Eq. �18�.

Once the explicit expressions for Ĝloc-eq and �̂loc-eq are
inserted, the equation becomes much simpler

Ĝ�T��,�;A, imp�

= ĝeq����̂�T���ĝeq���

− i�
�T

2T0
· � � ĝeq���

��
v̂eq���ĝeq��� − ĝeq���v̂eq���

� ĝeq���
��

 .

�21�

The product of matrices should be understood as a convolu-
tion in real space. The velocity v̂eq is the renormalized ve-
locity at equilibrium,

v̂eq�r,t;r�,t�� = − i lim
r�→r

�− ��

2m
− i�r − r���̂eq�r,r�,�� .

�22�

Let us point out an important difference between the two
parts of the Green’s function depending on the temperature

gradient, Ĝloc-eq and Ĝ�T. As was already mentioned, Ĝloc-eq

and �̂loc-eq are a straightforward extension of the equilibrium
Green’s function and self-energy for a nonuniform tempera-

ture. On the other hand, the equation for Ĝ�T contains the
�T-dependent self-energy which by itself is a function of

Ĝ�T. Thus, this is a self-consistent equation and in order to

find a close expression for Ĝ�T, one has to determine the
structure of the self-energy. Once the form of the self-energy
is known, one should take into consideration in the coarse of
linearization with respect to �T that all the propagators in

�̂�T may depend on the temperature gradient.
To complete the derivation of the electric current as a

response to a temperature gradient, we must also find the
dependence of the propagator of the superconducting fluc-

tuations L̂�r , t ;r� , t�� on �T. In the regime of linear re-
sponse, the explicit dependence on the temperature gradient

can be eliminated from the kinetic equation for L̂ by trans-

forming to the propagator L̂
=

,

�−1L̂
=

�r,t;r�,t�� = ��r − r��

−	 dr1dt1�̂=�r,t;r1,t1�L̂
=

�r1,t1;r�,t�� .

�23�

Thus, the entire dependence of the propagator on the tem-

perature gradient is through the self-energy term �̂
=

, which is
a function of the quasiparticle Green’s functions.

Let us separate the solution of Eq. �23� into the equilib-

rium and �T-dependent propagators, L̂
=

= L̂eq+ L̂loc-eq+ L̂�T.
The propagator at equilibrium satisfies the equation,

V̂eq�R;�,
� = ��−1 + �̂eq�R;�,
��−1. �24�

The entire dependence of L̂eq�
� on the frequency is due to

dressing of the bare propagator by its self-energy �̂eq�
�. In
the above equation the propagator of the superconducting
fluctuations is a function of the temperature T0. Similar to
Eq. �22�, we may define the “renormalized velocity” of the
collective mode describing the superconducting fluctuations
at equilibrium to be

V̂eq�r,t;r�,t�� = − i�r − r���̂eq�r,t;r�,t�� . �25�

Note that in fact V̂ does not have the dimension of a velocity.
The equations for the �T-dependent propagators remind

the first term in Eq. �21� for Ĝ�T,

L̂loc-eq�R;�,
� = − L̂eq�
��̂loc-eq�
�L̂eq�
� �26�

and

L̂�T�R;�,
� = − L̂eq�
��̂�T�
�L̂eq�
� . �27�

Once again, one should understand the product as a convo-
lution of the spatial coordinate.

III. ELECTRIC CURRENT AS A RESPONSE TO A
TEMPERATURE GRADIENT

For the calculation of the Nernst effect we have to derive
the expression for the electric current as a response to a
temperature gradient. In the presence of a magnetic field, the
electric current is a sum of two terms,

je = je
con + je

mag. �28�

The first one, je
con, is derived using the continuity equation

for the electric charge. The second contribution to the elec-
tric current originates from the magnetization current. Since
the magnetization current is divergenceless it cannot be ob-
tained using the continuity equation and it is found sepa-
rately.

As follows from the action in Eq. �6�, the fields � and 
carry electric current. Therefore, the charge continuity equa-
tion must include both fields,

− e�
�

�t����r,t��2 + � · je
con�r,t� = − 2ie��r�

� �†�r,t��↓�r,t��↑�r,t� − �r,t��↑
†�r,t��↓

†�r,t�� ,

�29�

where je
con�r , t�=−ie����r����

†�r , t�����r , t�
−���

†�r , t����r , t�−2ieA����2 /c� /2m. The terms in the
right-hand side �RHS� describe absorption and emission of
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quasiparticles by the superconducting fluctuations; the factor
2 reflects the fact that the Copper pairs carry charge of 2e.

To find the expression for je
con in terms of the Green’s

function, we rewrite the charge density using the lesser com-
ponent of the Green’s function

��r,t� = − e lim
r�→r

t�→t+

�
�

���
†�r�,t�����r,t��

= ie lim
r�→r

t�→t

�
�

G��r,t;r�,t�� . �30�

We use the notation t�→ t+ to indicate that the limit should
be taken in such a way that t is on the upper branch of the
Keldysh contour while t� is on the lower branch.22 The sum-
mation over the spin projection results in a factor of 2. Here
�A� denotes the quantum mechanical averaging with the ac-
tion given in Eq. �6�. Therefore, the Green’s function is fully
dressed by the interactions and depends on the impurity po-

tential. In addition, Ĝ is a function of the temperature gradi-
ent. Since we find the current by extracting it from the con-
tinuity equation, we assume that the temperature gradient has
some spatial modulations that will be set to zero at the end of
the procedure.

Next, we insert the above expression into the continuity
equation given in Eq. �29� and rewrite � · je

con as a sum of
two terms,

� · je
con = I1 + I2,

I1 = e lim
r�→r

t�→t+

� �

�t
+

�

�t�
��

�

���
†�r�,t�����r,t�� ,

I2 = − 2ie lim
r�→r

t�→t+

���r��†�r�,t���↓�r,t��↑�r,t�

− �↑
†�r�,t���↓

†�r�,t����r��r,t�� . �31�

To resolve the expression for je
con we need to find the equa-

tions of motion for the field �. The variational derivative of
the action in Eq. �6� with respect to the �† yields the equa-
tion of motion for the field �,

i
����r,t�

�t
=

− 1

2m
��−

ie

c
A�r���r���−

ie

c
A�r����r,t�

+ ��r�Vimp�r����r,t� + ���r��r,t��−�
† �r,t� .

�32�

the average, the equations of motion allow us to rewrite the

expression for I1 as

I1 = − ie lim
r�→r

t�→t+

��
�

− 1

2m��− i
e

c
A�r���r���− i

e

c
A�r�

+
1

2m��� − i
e

c
A�r����r����� − i

e

c
A�r��

+ ��r�Vimp�r� − ��r��Vimp�r�����
†�r�,t�����r,t�

+ �
�

���
†�r�,t���−�

† �r,t���r��r,t�

− �
�

���r��†�r�,t���−��r�,t�����r,t�� . �33�

Now, we wish to express the electric current in the pres-
ence of a gravitational field in terms of the propagators. The
expression ��r , t���

†�r� , t���−�
† �r , t�� and its counterpart are

averaged with respect to the Hamiltonian that includes both
the interactions and the gravitational field. These expressions
can be written in terms of the self-energy of the quasiparti-
cles. For example, ����r��r , t���

†�r� , t���−�
† �r , t��=

−i��r��dr1dt1�̂��r , t ;r1 , t1���r1�Ĝ��r1 , t1 ;r� , t��. �Here, the
factor i appears because in real time the evolution operator is
of the form e−iHt and because of the conventional definition
of the propagators and self-energies.22�. As a result, we ob-
tain,

I1 = − 2e lim
r�→r

t�→t


−
���r���− ieA�r�/c�

2m
Ĝ�r,t;r�,t��

+
����r����� + ieA�r��/c�

2m
Ĝ�r,t;r�,t��

+ ��r�	 dr1dt1�̂�r,t;r1,t1���r1�Ĝ�r1,tt;r�,t��

−	 dr1dt1Ĝ�r,t;r1,t1���r1��̂�r1,t1;r�,t����r����

.

�34�

The factor 2 is a consequence of the sum over the spin index.
Similarly, we can express the averages in the equation for I2
in terms of the self-energy of the superconducting
fluctuations, e.g., ���r��†�r� , t���↓�r , t��↑�r , t��=

−i�dr1dt1�̂�r , t ;r1 , t1���r1�L̂�r1 , t1 ;r� , t����r��.
In the regime of linear response we may eliminate the

explicit dependence of the current on ��r� by expressing the

current in terms of Ĝ
=

, L̂
=

, �̂
=

, and �̂
=

�as defined in Eq. �8��.
Then, the sum of the two contributions to � · je

con becomes
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� · je
con = − 2e lim

r�→r

t�→t


−
���− ieA�r�/c�

2m
Ĝ
=

�r,t;r�,t��

+
����� + ieA�r��/c�

2m
Ĝ
=

�r,t;r�,t��

+	 dr1dt1�̂=�r,t;r1,t1�Ĝ
=

�r1,t1;r�,t��

−	 dr1dt1Ĝ
=

�r,t;r1,t1��̂
=

�r1,t1;r�,t��

+	 dr1dt1�̂=�r,t;r1,t1�L̂
=

�r1,t1;r�,t��

−	 dr1dt1L̂
=

�r,t;r1,t1��̂
=

�r1,t1;r�,t����

. �35�

Note that the current still depends on the gravitational field
�i.e., on the temperature gradient� through the propagators
and self-energies.

In the final step of the derivation one has to resolve the
expression for the current out of the gradient. In other words,
to reformulate the products of propagators and self-energies
as a derivative with respect to the center-of-mass coordinate.
As discussed in the previous section, we can isolate the de-
pendencies on the center-of-mass coordinate created by the
vector potential and by the impurities. After we average the
current over the disorder and transform to the gauge-
invariant propagators and self-energies, these dependencies
vanish. Pay attention that when the limit r�→r is taken, one
may rewrite Eq. �35� in terms of the gauge-invariant quanti-
ties alone. Therefore, we expand the products of the propa-
gators and the self-energies with respect to the deviation
from R exactly in the same way as performed in Eq. �17�. As
a consequence of the symmetric form of the terms in Eq.

�35�, ��̂Ĝ− Ĝ�̂�� and ��̂L̂− L̂�̂��, one may check that all
even orders in the expansion vanish. In the regime of linear
response it is enough to keep only the lowest nonvanishing
order in the expansion. Eventually, the expression for the
current becomes

je
con�r,t� = ie	 dr�dt��v̂

=
�r,t;r�,t��Ĝ

=
�r�,t�;r,t���

+ ie	 dr�dt��V̂
=

�r,t;r�,t��L̂
=

�r�,t�;r,t��� + H.c.

�36�

We use the notation �¯ �� to remind that the expression
inside the square brackets is a product of matrices and to
indicate that the current corresponds to the lesser component

of the resulting matrix. The matrices v̂
=

and V̂
=

are the renor-
malized velocities defined in Eqs. �22� and �25� with the

�T-dependent self-energies �̂
=

and �̂
=

replacing the equilib-
rium ones.

The velocity of the quasiparticles v̂ is renormalized by the

self-energy, �v̂�r , t ;r� , t��=−i�r−r���̂�r , t ;r� , t��. We find it
useful to rewrite this expression as follows: −�i�r�−r�
+2i�r−r����̂�r , t ;r� , t��. The idea behind this representation
can be explained using, as an example, the first-order expan-
sion of the self-energy with respect to the superconducting
fluctuations presented in Fig. 3. In this example, the self-
energy contains a quasiparticle Green’s function propagating
from r� to r and a propagator of the superconducting fluc-
tuations that goes from r to r�. Correspondingly, the first

difference of the coordinates in the square brackets acts on Ĝ

while the second �which appears with the factor 2� acts on L̂.
As mentioned in the beginning of this section, there is

another contribution to the electric current arising from the
magnetization,

je
mag = − 2ic � � M�r� lim

r�→r

t�→t

�Ĝ
=

�r�,t�;r,t���, �37�

where M�r�=er�v /2mc denotes the magnetization and the
factor of 2 is due to the summation over the spin index. We
would like to emphasize that since the magnetization is cre-
ated by itinerant electrons, the magnetization current can
equally contribute to the transverse transport electric current.

IV. DERIVATION OF THE TRANSVERSE
COMPONENT OF je

con

At this stage of the derivation we shall consider only je
con

keeping for a while the magnetization current aside. Inserting
the expressions for the �T-dependent propagators given in
Eqs. �19�, �21�, and �27� into Eq. �36� and extracting the
lesser component, we obtain je

con as a response to the tem-
perature gradient. First of all, one may observe that the con-

tributions of the local-equilibrium functions Ĝloc-eq and

L̂loc-eq to je
con vanish upon averaging the current over the

sample. Since we are not interested in terms that vanish after
averaging over the volume, the nonzero part of je

con becomes

ω−ε

ω

FIG. 3. The self-energy in the first order with respect to the
propagator of superconducting fluctuations before averaging over
the disorder.

KAREN MICHAELI AND ALEXANDER M. FINKEL’STEIN PHYSICAL REVIEW B 80, 214516 �2009�

214516-8



jei
con = −

e� jT

2T0
	 d�

2�
�
�nF���

��
�vi

R���gR���v j
A���gA���

+ vi
R���gR���v j

R���gA��� − vi
R���gR���v j

R���gR���

− gR���v j
R���gR���vi

A���� −
e� jT

T0
	 d�

2�
�nF���

��vi
R���

�gR���
��

v j
R���gR��� − vi

R���gR���v j
R���

�gR���
��


− ie	 d�

2�
vi

R���gR������T
� ����1 − nF���� + ��T

� ���nF����

��gR��� − gA���� + ie	 d


2�
Vi

R�
�LR�
����T
� �
�

��1 + nP�
�� − ��T
� �
�nP�
���LR�
� − LA�
�� + c.c.

�38�

Here and from now on we omit the notation eq from the
equilibrium quantities such as the propagators, self-energies,
and velocities.

As we are interested in the Gaussian fluctuations, we re-
place the equilibrium Green’s function by ĝ�r ,r� ,��
= ĝ0�r ,r� ,��+�dr1dr2ĝ0�r ,r1 ,���̂�r1 ,r2 ,�� ĝ0�r2 ,r� ,��. Be-
sides, we keep only the contribution to the self-energy with
one propagator of the superconducting fluctuations as illus-
trated in Fig. 3,

��,��r,r�,�� = − i	 d


2�
G�,��r�,r,
 − ��L�,��r,r�,
� ,

�R,A�r,r�,�� = − i	 d


2�
G��r�,r,
 − ��LR,A�r,r�,
�

+ GA,R�r�,r,
 − ��L��r,r�,
� . �39�

The propagator of the superconducting fluctuations �see the
end of Sec. II� is determined by the standard geometrical

series L̂�
�= �−�−1+�̂�
��−1, where �̂ is approximated by
the particle-particle polarization operator as shown in Fig. 4,

��,��r,r�,�� = − i	 d�

2�
G�,��r,r�,
 − ��G�,��r,r�,�� ,

�R,A�r,r�,�� = − i	 d�

2�
G��r,r�,
 − ��GR,A�r,r�,��

+ GR,A�r,r�,
 − ��G��r,r�,�� . �40�

One may check that at equilibrium �eq
K = �1+2nP�
����eq

R

−�eq
A �, where nP�
� is the Bose distribution function. After

averaging over the disorder, �eq
R and �eq

A are given by the
standard expressions.

We may now obtain the leading-order corrections in the
interaction to the electric current as a response to a tempera-
ture gradient in the linear regime. We should consider all
possibilities to linearize the expressions for ��T and ��T
with respect to �T in Eq. �38�. The diagrammatic interpreta-
tion for the different contributions to the transverse electric
current obtained in the quantum kinetic equation technique
corresponds to the three diagrams shown in Fig. 5. After
averaging over the disorder the leading contributions to the
Nernst signal in the diffusive regime are obtained from the
diagrams with three Cooperons13 presented in Figs. 6�a� and
6�b� and the Aslamazov-Larkin diagram11 shown in Fig. 6�c�.
�The Cooperon is a singular diffusion propagator which de-
scribes the rescattering on impurities in the particle-particle
channel.� Since we generate these terms using the quantum
kinetic equation, the analytic structure of the diagrams is
given by the equation.

To get the explicit expression for the current we return to
the gauge-invariant equilibrium Green’s functions g̃ given in
Eq. �15�. Since we restrict our calculation to the limit 
c�
�1 �where 
c=eH /m�c is the cyclotron frequency of the
quasiparticles�, we may neglect the dependence of g̃eq on the
magnetic field entering through the Landau quantization of

ε

ω−ε

ε

ω−ε

+ +
. . .

+=

ε

ω−ε

FIG. 4. The geometrical series
describing the fluctuations propa-
gator in the Cooper channel.

(a) (b) (c)

FIG. 5. The diagrammatic contributions to the transverse com-
ponent of je

con before averaging over the disorder. �The obvious
counterpart diagram for �a� is not shown.�

(a) (b) (c)

FIG. 6. The diagrammatic contributions to the transverse com-
ponent of the je

con. Diagrams �a� and �b� describe the fluctuation of
the superconducting order parameter decorated by three Cooperons
and �c� is the Aslamazov-Larkin diagram. �The obvious counterpart
diagrams for �a� and �b� are not shown.�
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the quasiparticles states. Therefore, the entire dependence of
the quasiparticle Green’s functions on the magnetic field is
through the phase. Unlike the quasiparticles, the Landau
quantization of the collective modes �both the Cooperons
and the fluctuations of the superconducting order parameter�
cannot be neglected because the quantization condition for
these modes is �c /T0�1, where in the diffusive regime
�c=4eHD /c is the cyclotron frequency in the Cooper chan-
nel. Note that �c�
c��F���
c because the product of the
Fermi energy and the mean-free time is assumed to be a large
parameter. �In �c the effective charge is equal to 2e and the
diffusion coefficient D replaces 1 /2m because in the Coop-
erons and the fluctuations propagators the term Dq2 substi-
tutes the kinetic energy p2 /2m.�

Similar to the quasiparticle Green’s functions, in the limit
of low magnetic field the Cooperons can be separated into
the phase exp�2ie�r�

r A�r1�dr1 /c� and the gauge-invariant

part at H=0, C̃R,A�� ,� ,
−��= ��i�2�−
��−D��
2�−1, see

Appendix C in Ref. 27. At a finite magnetic field, one may
express the gauge-invariant part of the Cooperon propagator
using the Landau-level quantization

C̃N
R,A��,
 − �� = ��i�2� − 
�� + �c��N + 1/2��−1, �41�

where N is the index of the Landau level. Similarly, the
propagator of the superconducting fluctuations written in
terms of the Landau levels becomes

L̃N
R,A�
� =

− 1

�
�ln� T

Tc
� + �R,A�
,N� − ��1

2
� +  
−1

,

�42a�

�R,A�
,N� = ��1

2
�

i


4�T
+
�c�N + 1/2�

4�T
� . �42b�

Here, ��x� is the digamma function. The primary goal of this
calculation is to analyze the measurements of the Nernst ef-
fect in superconducting films.5,6 In such films the electron
states are not quantized and therefore � is the density of
states of three-dimensional electrons �as well as D�. The pa-
rameter  �1 / ����F� is important for understanding the dif-
ference in magnitude between the longitudinal and transverse
Peltier coefficients. The longitudinal Peltier coefficient, �xx,
contains an integral over the frequency that vanishes when
 =0 while the integrand determining �xy remains finite even
in the absence of  . As a result, in the expression for the
Nernst coefficient given in Eq. �2� the second term in the
numerator is smaller than the first one by a factor of the order
T / ����F�.28

Using the expressions for the quasiparticle Green’s func-
tions, the Cooperons and the propagators of the supercon-
ducting fluctuations in the equilibrium state we may investi-

gate the contributions of Ĝ�T and L̂�T to the current. Recall
that we are interested in the transverse current. For illustra-
tion, let us show how to find the transverse current for one
representative term out of the few contributions to the
Aslamazov-Larkin diagram,

je x
con�r1� =

e�yT

2T0
	 d�d��d


�2��3 	 dr2 ¯ dr12 lim
r12→r1

� �1
x

2m
+

ieHy1

4mc
−

�12
x

2m
+

ieHy12

4mc
�

� lim
r6→r7

� �7
y

2m
−

ieHx7

4mc
−

�6
y

2m
−

ieHx6

4mc
�g0

R�r1,r2,��g0
A�r11,r2,
 − ��g0

R�r11,r12,��CR�r2,r3,�,
 − ��

�CR�r10,r11,�,
 − ��Leq
R �r3,r4,
�Leq

A �r9,r10,
�g0
R�r5,r6,���g0

A�r5,r8, 
 − ���g0
R�r7,r8,���CR�r4,r5,��,
 − ���

�CR�r8,r9,��,
 − ���F��,��,
� . �43�

In Fig. 7 we indicate the spatial coordinates corresponding to the expression given above. Since in this part of the calculation
we concentrate on the integration over the spatial coordinates, we collect all the frequency-dependent factors into the function
F�� ,�� ,
�=��tanh�� /2T�−tanh���−
� /2T��tanh��
−��� /2T��nP�
� /�
 and leave them aside for a while.

Next, we rewrite the Cooperons and the propagators of the superconducting fluctuations using the basis of the Landau levels
states, !N,n�r�=RN,n�r�ein" /�2� �where RN,n�r� are the generalized Laguerre polynomials�. In addition, we separate the qua-
siparticles Green’s functions into the phases and the gauge-invariant Green’s functions. Then, following the flux technique
introduced in Ref. 27, we rearrange Eq. �43� as

r1
r12

r11
r10 r9

r8
r7
r6

r5
r4r3r2

FIG. 7. The Aslamazov-Larkin diagram.
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je x
con�r1� =

e�yT

4�T0�H
2 	 d�d��d


�2��3 �
N,M

	 dr2 ¯ dr12e
−ieH�r11−r1���r1−r2�/2ce−ieH�r5−r6��r6−r8�/2c lim

r12→r1

� �1
x

2m
+

ieH�y1 − y2�
4mc

−
�12

x

2m

−
ieH�y11 − y12�

4mc
g̃0

R�r1 − r2,��g̃0
A�r11 − r2,
 − ��g̃0

R�r11 − r12,�� lim
r6→r7

� �7
y

2m
−

ieH�x7 − x8�
4mc

−
�6

y

2m
+

ieH�x5 − x6�
4mc


�g̃0

R�r5 − r6,���g̃0
A�r5 − r8,
 − ���g̃0

R�r7 − r8,���e−ieH�r8−r11���r11−r2�/c−ieH�r2−r5���r5−r8�/c!N,0�r2 − r5�!M,0�r8 − r11�

�CN
R��,
 − ��CM

2 ��,
 − ��LN
R�
�LM

A �
�CN
R���,
 − ���CM

R ���,
 − ���F��,��,
� , �44�

where �H=�c /2eH is the magnetic length in the Cooper
channel. In the last step we used the orthogonality of the
generalized Laguerre polynomials �an example for the treat-
ment of the propagators in this basis can be found in Ref.
29�. The first two exponents in Eq. �44� contain the magnetic
fluxes accumulated in the triangles �r1 ,r2 ,r11� and
�r5 ,r6 ,r8�, respectively. One way to get the transverse cur-
rent is to extract the magnetic field from these two fluxes or
from the diamagnetic terms. As a result the transverse current
appears with the coefficient 
c�. We neglect these terms; we
will see that when the magnetic field responsible for turning
the current to the transverse direction is extracted from the
Cooperons or the propagators of the superconducting fluc-
tuations one gets a much larger factor of the order �C /T.
Therefore, the integration over the coordinates of the two
triangles can be done with the quasiparticle Green’s func-
tions taken at H=0,

je x
con = −

e�yT

8�2T0�H
2 �2�4	 d�d��d
	 dr�

N,M

��2D� �

�x
+

ieHy

c
�!N,0�r�

��2D� �

�y
−

ieHx

c
�!M,0�r�

�CN
R��,
 − ��CM

R ��,
 − ��LN
R�
�LM

A �
�CN
R���,
 − ���

�CM
R ���,
 − ���F��,��,
� . �45�

The integral over the coordinate corresponds to the matrix
element of the velocity operators �N ,0�VxVy�M ,0�, where
�M ,0�=!M,0 is the quantum state of a particle with a mass
equal to 1 /2D in the M Landau level and zero angular mo-
mentum in the z direction. Using the known properties of the
Laguerre polynomials, the matrix element can be written as
�N ,0�VxVy�M ,0�=2iD2��N+1��N,M−1− �M +1��M,N−1� /�H

2 .
Finally, the contribution to the current becomes

je x
con = − i

e�yT

4�2T0�H
4 �2D2�4	 d�d��d
�

N=0

�

�N + 1�

�CN
R��,
 − ��CN+1

R ��,
 − ��CN
R���,
 − ���

�CN+1
R ���,
 − ����LN

R�
�LN+1
A �
�

− LN+1
R �
�LN

A�
��F��,��,
� . �46�

In the limit H→0 when the quantization of the collective
modes can be neglected, one may replace the Cooperons and
the propagators of the superconducting fluctuations in Eq.
�43� by the product of the phase terms �with charge 2e� and
the corresponding propagators in the absence of a magnetic
field. Then, the contribution to the current at vanishingly
small magnetic field can be found by employing the flux
technique of Ref. 27. One may check that the same result is
obtained when the transformation from the discrete sum into
an integral over a continuous variable is performed in Eq.
�46�.

Let us conclude with a remark regarding the diagram-
matic interpretation of the different contributions to je

con. As
already mentioned, the analytical structure and the expres-
sions for the vertices of these diagrams were found from the
quantum kinetic equation. In principle, the same diagrams
can be calculated using the Kubo formula. However, if for
simplicity one uses in the Kubo formula the heat current
operator of noninteracting electrons described in Eq. �4�, the
resulting expressions for these diagrams differ from those
obtained in the quantum kinetic approach. Most important,
as one can see from Eq. �38�, in the quantum kinetic ap-
proach the frequency accompanies the renormalized velocity
so that the expression for the electric current is generally of
the form eg���vi���g����v j���� jT /T0. In other words, the fre-
quency appears together with the velocity that was already
renormalized by the interaction. On the other hand, owing to
the fact that the frequency in the simplified version of the
Kubo formula is attached to the external vertex before the
renormalization of the velocity, the expression for the current
has a totally different structure.

This is also the proper place to explain what is so unique
in the superconducting fluctuations in the diffusive limit that
leads to the giant Nernst effect. As any transverse current
coefficient, �xy contains a difference of two almost equal
terms. In addition, like all thermoelectric coefficients the in-
tegral over the frequency in � contains a factor of the qua-
siparticle frequency. Consequently, as discussed in Appendix
C the contribution of the quasiparticles to the transverse
Peltier coefficient includes two small parameters. The first is
the usual 
c� that appears in all transverse currents. The
second is a reminiscence of the fact that the frequency factor
�that in the Boltzmann equation is converted into the energy�
is responsible for the vanishing of the Peltier coefficient un-
der the approximation of a constant density of states. When a
nonconstant density of states is considered, the integration
over the energy yields another small parameter proportional
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to T0 /�F. Now we turn to the contribution of the supercon-
ducting fluctuations to the transverse component of je

con, and
consider Eq. �46� as a representative example. For the mo-
ment we ignore the factor � in F�� ,�� ,
� associated with the
thermoelectric current. Then, the difference between the two
almost identical terms results in an odd integrand with re-
spect to the frequency of the superconducting fluctuations, 
,
which potentially may lead to the vanishing of �xy. So, how
can the superconducting fluctuations induce a strong Nernst
signal? The explanation lies in the fact that the Cooperons
accompanying the superconducting fluctuation depend on the
frequency of the incoming/outgoing quasiparticles and not
only on the frequency 
 carried by the fluctuations �Eq.
�41��. The dependence of the Cooperons on � combined with
the frequency factor � in F�� ,� ,
� save the situation. This is
because the integration over � results in an integrand, that is,
an even function of 
 and hence, there is no longer danger
that the transverse Peltier coefficient vanishes. We shall see
that instead of the two small parameters obtained for the
quasiparticles, the contribution of the superconducting fluc-
tuations includes only one. Because of the extra sensitivity of
these fluctuations to the magnetic field this parameter is
�c /T0.

V. FINAL EXPRESSIONS FOR THE TRANSVERSE
COMPONENT OF je

con

If one examines Eq. �38� which presents the general ex-
pression for the contributions to the electric current from

Ĝ�T and L̂�T, one may notice that not all the terms contain
the derivative of a Fermi distribution function. As one may
expect, the terms in which the Fermi distribution function is
not differentiated contribute only to the transverse compo-
nent of je

con and not to the longitudinal one. After integration
over the Fermion degrees of freedom �the frequency � and
the coordinates of the quasiparticles Green’s functions�, the
terms proportional to �nF��� /�� give two nonvanishing con-
tributions. The first one corresponds to the Aslamazov-
Larkin diagram presented in Fig. 6�c�,

je i
con1 = �ij

e� jT

16�2T0
�2	 d
�

N=0

�

�N + 1�
�nP�
�

�

�LN

R�
�LN+1
A �
�

− LN+1
R �
�LN

A�
����R�
,N� − �R�
,N + 1� + �A�
,N�

− �A�
,N + 1����c�N + 1/2���R�
,N� − �A�
,N��

− �c�N + 3/2���R�
,N + 1� − �A�
,N + 1��� , �47�

where the upper index in jcon1 enumerates the contribution to
the current and �ij is the antisymmetric tensor. The second
contribution generated by terms with the derivative
�nF��� /�� corresponds to the diagram with three Cooperons
shown in Fig. 6�a�,

je i
con2 = − �ij

e� jT

4�2T0
�	 d
�

N=0

�

�c�N + 1�

�
1

4
LN

R�
�
�nP�
�

�


 i
 + �c�N + 1/2�

4�T0
��A��
,N�

− �R��
,N�� +
i
 + �c�N + 3/2�

�c
��A�
,N� − �R�
,N�

− �A�
,N + 1� + �R�
,N + 1��� +
i

2
LN

AnP�
�

�
� i
 + �c�N + 1/2�
�4�T0�2 �A��
,N�

+
i
 + �c�N + 3/2�

4�T0�c
��A��
,N� − �A��
,N + 1���

+ N ↔ N + 1� + c.c. �48�

Here �R,A� and �R,A� correspond to the first and second deriva-
tives of the digamma function defined in Eq. �42b�. The no-
tation N↔N+1 means that N is replaced by N+1 and the
other way around in all the terms inside the curly brackets.
Notice that there are no contributions proportional to the
derivative of the distribution function which can be attrib-
uted to the diagram shown in Fig. 6�b�.

Next, we discuss the group of terms that are proportional
to nF���. The diagrammatic interpretation of these terms,
which are generated by Eq. �38�, includes all three diagrams
presented in Fig. 6. However, one may check that the contri-
butions from the diagrams shown in Figs. 6�b� and 6�c� are
canceled by a part of the contribution from the diagram
given in Fig. 6�a�. The remaining contribution is

je i
con3 = − i�ij

e� jT

4�2T0
�	 d
�

N=0

�

�N + 1�nP�
�
�LN
R�
�

+ LN+1
R �
����R�
,N� − �R�
,N + 1��

+
�c

4�T
LN

R�
��R��
,N� +
�c

4�T0
LN+1

R �
��R��
,N + 1�� .

�49�

In the derivation of the different contributions to je
con we used

the following identities for products of the distribution func-
tions:

nF���nF�
 − �� = nP�
��nF�� − 
� − nF���� ,

�nF�
 − ��
�


nF��� =
�nP�
�

�

�nF�� − 
� − nF����

−
�nF�
 − ��

�

nP�
� . �50�

Further analysis of je
con at arbitrary temperatures and mag-

netic fields shows that in je i
con1 and je i

con2 the integration over
the frequency accumulates at 
�T�1 /�. As a consequence
of the narrow range of the integration, the final expressions
for these two contributions vanish in the limit T→0. In con-
trast, in je i

con3 the integration over the frequency is not limited
to small frequencies and, hence, the outcome of the integra-
tion depends logarithmically on the scattering rate 1 /� which
acts as an ultraviolet cutoff. In addition, as the temperature
goes to zero there is even a more serious problem with this
term because its prefactor is proportional to �c /T0. Such a
dependence on the temperature violates the third law of ther-
modynamics. �The connection between the third law of ther
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-l modynamics and the Nernst effect was discussed in Sec. I.�
We shall see that the dangerous parts in je i

con3 are canceled out
by the magnetization current that up to now we have not yet
considered.

VI. MAGNETIZATION CURRENT AND THE THIRD LAW
OF THERMODYNAMICS

In this section we examine the magnetization current
given in Eq. �37�. In general, we need to insert the

�T-dependent part of the Green’s function, Ĝloc-eq+ Ĝ�T,
into Eq. �37�. Since after the averaging over the disorder

Ĝ�T�r→r� ,�� is translationally invariant, it is clear that this
part of the Green’s function does not contribute to the mag-
netization current. On the other hand, the explicit depen-
dence of the local-equilibrium Green’s function on the
center-of-mass coordinate leads to a nonzero contribution to
the magnetization current,

je
mag = 2ic�R � M�R�	 d�

2�
lim
�→0

�
R � T

T0

�geq
� ��,�;A, imp�

��
.

�51�

Thus, Ĝ�T and Ĝloc-eq are complementary to each other while
the first contributes only to je

con, the other one fully deter-
mines je

mag. One should recall that we are looking for a cur-
rent that does not vanish after spatial averaging, i.e., after
integration with respect to the center-of-mass coordinate R.
Since in the process of averaging over R we may integrate
by parts, the magnetization current can be written as

je i
mag = 2i�ijcMz lim

�→0
	 d�

2�

� jT

T0
geq
� ��,�;A, imp� . �52�

Here we integrated by parts over the frequency as well. One
may recognize that je

mag is directly related to the magnetiza-
tion density at equilibrium,

je i
mag = − �ijc�Mz�

� jT

T0
. �53�

The result demonstrates the strength of the quantum kinetic
approach. This method provides a way to derive both com-
ponents of the current without engaging any thermodynami-
cal arguments.

Actually, at this point one may employ in Eq. �53� the
known expression for the magnetization in the presence of
superconducting fluctuation. Still, since we are interested in
the interplay between the quasiparticle excitations and the
fluctuations of the superconducting order parameter, let us
derive the expression for the first-order correction to the
magnetization induced by the fluctuations starting with Eq.
�52�. Using the standard identities for the Keldysh Green’s
function at equilibrium, one gets

je i
mag = ic�ij

� jT

T0
lim

r�→r
	 d�

2�
dr1dr2�Mz�r� + Mz�r���

�nF����g0
A�r − r1,�;A, imp��A�r1 − r2,�;A, imp�

�g0
A�r2 − r�,�;A, imp� − g0

R�r − r1,�;A, imp�

��R�r1 − r2,�;A, imp�g0
R�r2 − r�,�;A, imp�� . �54�

Here, for convenience, we returned to the initial coordinates.
Next, we use the fact that the equilibrium Green’s function in
the absence of fluctuations satisfies the following identity
−�g0

R,A /�H=g0
R,AMg0

R,A. Therefore, the expression for the
magnetization current can be rewritten as

je i
mag = − 2ic�ij

� jT

T0
lim

r�→r
	 d�

2�
dr1nF���

�� �g0
A�r − r1,�;A, imp�

�Hz
�A�r1 − r�,�;A, imp�

−
�g0

R�r − r1,�;A, imp�
�Hz

�R�r1 − r2,�;A, imp� .

�55�

Finally, using the explicit expression for the self-energy and
rearranging all the terms we reformulate the expression for
the magnetization current in terms of the propagator of the
superconducting fluctuations,

je i
mag = − ic�ij

� jT

T0
lim

r�→r
	 d


2�
dr1nP�
�

�� ��R�r − r1,
;A, imp�
�Hz

ŁR�r1 − r�,
;A, imp�

−
��A�r − r1,
;A, imp�

�Hz
LA�r1 − r2,
;A, imp�

= − ic�ij
� jT

T0

�

�Hz
lim
�→0
	 d


2�
nP�
��ln LR

−1��,
;A, imp�

− ln LA
−1��,
;A, imp�� . �56�

The transition from Eq. �54� to the last line in Eq. �56� is
illustrated in Fig. 8. Averaging over the disorder and trans-
forming from the expression for the propagator as a function
of the coordinates to the basis of Landau levels, one obtains
the known expression for the correction to the magnetization
in the lowest order with respect to the fluctuations,13,30

je i
mag = �ij

� jT

T0

�

�H

eH

�
	 d


2�i
�
N=0

�

nP�
��ln�LN
R�
��−1

− ln�LN
A�
��−1� . �57�

The discussion of higher order corrections to the magnetiza-
tion is given in Ref. 30.

Similar to je
con3 in Eq. �49�, the integration over the fre-

quency in the magnetization current is restricted by the scat-
tering rate and at low temperature je

mag also diverges as
�c /T. The opposite sign of the magnetization current relative
to je

con3 suggests that these dangerous parts may cancel each
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other making the Nernst signal compatible with the third law
of thermodynamics. Another hint for this cancellation is the
similar analytical structure of je

mag and je
con3. �All the terms in

Eqs. �49� and �57� are a product of either retarded or ad-
vanced functions only.� In Appendix B we show that the
diverging parts of the magnetization current indeed identi-
cally cancel out the diverging parts of je

con3. We demonstrate
that the total current is independent of � in the whole tem-
perature range T�1 /�. As a result, the Nernst signal is regu-
lar at T→0. Moreover, the contributions which are constant
with respect to the temperature also vanish and the remaining
terms are linear in T.

VII. PHASE DIAGRAM FOR THE NERNST EFFECT—
COMPARISON BETWEEN THE THEORETICAL RESULTS

AND THE EXPERIMENT

In the following part we present the theoretical expres-
sions for the transverse Peltier coefficient for a superconduct-
ing film in the normal state for various regions of the tem-
perature and the magnetic field. The phase diagram for the
Peltier coefficient is plotted in Fig. 9. In the area below the
line ln�T /Tc�H��=�c /4�T the Landau-level quantization of
the superconducting fluctuations becomes essential. The line
ln�H /Hc2

�T��=4�T /�c separates the regions of classical and
quantum fluctuations. From now on T0 is replaced by T
which represents the spatially averaged temperature.

For a small magnetic field, �c�T, close to the transition
temperature �T�Tc� the leading contribution to �xy is given
by the Aslamazov-Larkin term �see Fig. 6�c�� and the mag-
netization current,

�xy �
e�c

192T ln T/Tc�H�
. �58�

In the previous section we discussed in details the impor-
tance of the magnetization current in canceling the quantum
contributions to the Nernst signal. In the vicinity of Tc one
can interpret the expression in Eq. �58� in terms of the clas-
sical picture in which the Cooper pairs with a finite lifetime
are responsible for the thermoelectric current. The magneti-
zation current is just equal to −2 /3 of the leading-order con-
tribution from the Aslamazov-Larkin term. Note that unlike
the electric conductivity, �xx, for which the anomalous
Maki-Thompson12 and the Aslamazov-Larkin terms yield
comparable corrections, the contribution from the anomalous
Maki-Thompson term to the Nernst signal is ��T /�F�2�1
smaller than the one given by Eq. �58�. Therefore, it is natu-
ral that in the vicinity of Tc our result coincides with the
expression13,31 obtained phenomenologically from the time-

dependent Ginzburg-Landau �TDGL� equation.
When temperature is increased further away from the

critical temperature, the sum of the contributions to the trans-
verse Peltier coefficient from all the diagrams and the mag-
netization current yields

�xy �
e�c

24�2T ln T/Tc
. �59�

A comparison between the transverse Peltier coefficient in
the vicinity of Tc �Eq. �58�� and far from the transition �Eq.
�59�� reveals that the two expressions differ only by a nu-
merical coefficient. The similarity between the expressions
for �xy in the two different limits is not seen in paraconduc-
tivity. This is a consequence of the cancellation of the quan-
tum contributions to je

con by the magnetization current, which
is specific for the Nernst effect. Away from the critical region
T�Tc, the quantum nature of the fluctuations reveals itself in
contributions to je

con3 and je
mag that contain an integration

over a wide interval of frequencies between T and 1 /�. As a
result, these terms become of the order ln�ln 1 /T��
−ln�ln T /Tc�. However, as we show in Appendix B these
�-dependent terms in je

con3 and je
mag cancel each other.32 The

Peltier coefficient far from Tc demonstrates how the third law
of thermodynamics constrains the magnitude of the Nernst
signal not only at T→0 but also at high temperatures, T
�Tc.

The comparison of our result with the experimental ob-
servation of Ref. 6 for two Nb0.15Si0.85 films of thicknesses
35 and 12.5 nm �with critical temperatures Tc=380 mK and
Tc=165 mK, respectively� is given in Fig. 10. The Peltier
coefficient depends on the mean-field temperature of the su-
perconducting transition, Tc

MF, and on the diffusion coeffi-
cient through �c. Throughout the paper we fit the data using
the same diffusion coefficient D=0.187 cm2 /s which is
within the measurement accuracy of the value that is ex-
tracted from experiment as described in Ref. 6.

Mz ln−ddH

-1

FIG. 8. An illustration of the relation between the magnetization
current term that is obtained from the local-equilibrium Green’s
function and the thermodynamic diagram for the magnetization.

Eq. 58

Eq. 59

Eq. 60 Eq. 61

FIG. 9. The phase diagram for the Peltier coefficient �xy. We
indicate the equations in the text which give the corresponding ex-
pressions for �xy in the different limits. �c=4eHD /c is the cyclo-
tron frequency for the fluctuations of the superconducting order
parameter in the diffusive regime.
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The cancellation of the terms proportional to �c /T in the
limit T��c was described in the previous section. �Without
this cancellation we would get a nonzero Nernst effect in the
limit T→0 and the third law of thermodynamics would be
violated.� After the cancellation, the remaining contributions
to �xy in the limit T→0 are linear in the temperature,

�xy � −
eT ln 3

3�c�ln H/Hc2
�T��2 for H � Hc2

�60�

and

�xy �
2eT

3�c ln H/Hc2

for H � Hc2
. �61�

Similar to the limit �c�T the integrals determining the final
expression for � accumulate at low frequency. This situation
is not typical for fluctuations induced by a quantum phase
transition. Notice that �xy changes its sign in this region.
Since the transverse signal is nondissipative the sign of the
effect is not fixed. As mentioned before, in the vicinity of Tc
for �c�T, the main contribution to the Peltier coefficient is
from the Aslamazov-Larkin term and the magnetization cur-

rent. The magnetization current is opposite in sign to the
Aslamazov-Larkin terms and equals 2/3 of it. When crossing
to the region ln�T /Tc�H����c /T �see the phase diagram in
Fig. 9� the contribution from the magnetization current
grows. To the first order in �c /T the magnetization current
cancels the Aslamazov-Larkin term and the Peltier coeffi-
cient turns out to be proportional to O���c /T�2�. Lowering
further the temperature and increasing the magnetic field one
reaches the region �c�T and ln�H /Hc2

�T���T /�c. In this
region the magnetization current becomes dominant. Since
the magnetization current gives a contribution that is oppo-
site in sign to the Aslamazov-Larkin term, we obtain that the
Peltier coefficient is negative.

In Fig. 11 we plot the Peltier coefficient for the 35 nm
film as a function of the magnetic field at a temperature
higher than Tc. We take Tc

MF=385 mK to be slightly higher
than the measured critical temperature anticipating a small
suppression of the temperature of the transition by fluctua-
tions. �The data in Fig. 11, unlike the data in Fig. 10�a�, is
presented in linear rather than a logarithmic scale. Therefore,
this fit is much more sensitive to the input parameters com-
pared to the one in Fig. 10�a�. As a result, the small deviation
of Tc

MF from the measured Tc can be noticed. For consis-
tency, we use the same value of Tc

MF also in Fig. 10�a�.�
Figure 11 demonstrates the agreement between the theoreti-
cal expressions and the experimental observation for a broad
range of magnetic fields. In addition, we show that the ex-
perimental data is well described by Eq. �58� in the limit of
vanishing magnetic field; see inset of Fig. 11. Since Eq. �58�
is valid in the limit �c�T, it can describe only the first few
point in the measurement. In order to fit the entire range of
the magnetic field we had to include higher order terms in
�c /T. For that we needed to sum the contributions from all
diagrams and the magnetization current. We performed the
calculation assuming that ln�T /Tc�H���1; therefore the the-
oretical curve starts to deviate from the measured data when
ln�T /Tc�H�� is no longer small �H�1 T�.
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FIG. 10. �Color online� The transverse Peltier coefficient �xy

divided by the magnetic field H as a function of ln T /Tc in the limit
H→0 for films of thicknesses �a� 35 nm and �b� 12.5 nm. The
experimental data of Ref. 6 is presented by the black squares and
the solid line corresponds to the theoretical curve given by Eq. �59�.
The inset presents the fitting of the data in the vicinity of Tc with
Eq. �58�.
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FIG. 11. �Color online� The transverse Peltier coefficient �xy as
a function of the magnetic field measured at T=410 mK. The black
squares correspond to the experimental data of Ref. 8 while the
solid line describes the theoretical result. The arrow on the phase
diagram illustrates the direction of the measurement. In the inset the
low magnetic field data is fitted with the theoretical curve given by
Eq. �58�.
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VIII. SUMMARY

We demonstrated that the contribution from the fluctua-
tions of the superconducting order parameter to the Nernst
effect in disordered films is dominant and can be observed
far away from the transition. We showed that the important
role of the magnetization current is in canceling the quantum
contributions, thus making the Nernst signal compatible with
the third law of thermodynamics. The third law of thermo-
dynamics constrains the magnitude of the Nernst signal not
only at low temperatures but also far from Tc. As a conse-
quence of this constraint the phase diagram is less rich and
diverse than one expects in the vicinity of a quantum phase
transition.

The Nernst effect provides an excellent opportunity to test
the use of the quantum kinetic approach in the description of
thermoelectric transport phenomena. We showed that in this
scheme we get automatically all contributions to the Nernst
coefficient as response to the temperature gradient, in par-
ticular, the one from the magnetization current. This is an
advantage of the quantum kinetic approach but it is not the
only one. This method also allows us to verify the Onsager
relations; a comprehensive discussion of this issue is pre-
sented in Appendix A. The fact that the we were able to find
independently the two off-diagonal components of the con-
ductivity tensor, �ij and �̃ij, and verify that they are con-
nected through the Onsager relation assures that the quantum
kinetic approach developed in this paper and in Ref. 17 gives
the correct expressions for the electric and heat currents.

Finally, we should remark that our results for the Peltier
coefficient differ in few aspects from those obtained recently
in Ref. 33 using the Kubo formula. As we already discussed
in the end of Sec. IV, the simplified Kubo formula cannot
give the correct electric current as a response to a tempera-
ture gradient. Therefore, the claim of the authors of Ref. 33
that the difference between the Nernst signal calculated using
the simplified Kubo formula and the quantum kinetic ap-
proach is only in the numerical coefficients is unacceptable.
The expression given in Ref. 33 for �xy in the vicinity of Tc
cannot fit the experimental data and it also contradicts the
phenomenological result of the TDGL.31 The only fit of the
experimental data presented in Ref. 33 is a logarithmic plot
of the Nernst signal as a function of temperature using the
formula for temperatures not too close to Tc. Such a logarith-
mic plot is not very sensitive to the numerical coefficients.
The striking agreement between our results and the experi-
mental data, in particular, our ability to obtain the nontrivial
dependence of the Nernst signal on the magnetic field and
the fact that we reproduced the phenomenological result31

reinforces us in the correctness of our method.
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APPENDIX A: ONSAGER’S RELATIONS

In this appendix we compare the electric current arising as
a response to a temperature gradient and the heat current
generated by an electric field. We verify that for the Gaussian
fluctuations of the superconducting order parameter, the two
expressions are connected through the Onsager relations,34

�̃ij�B�=T0� ji�−B�. �In a similar way, in Ref. 17 we demon-
strated the Onsager relations for the longitudinal current in
the presence of the Coulomb interaction.�

The derivation of the electric current induced by the tem-
perature gradient was presented in Sec. II, where we dis-
cussed the two contributions to the current. The first one,
je

con, was found using the continuity equation and its expres-
sion before the expansion in the superconducting fluctuations
is given in Eq. �38�. The second contribution, analyzed in
Sec. VI, is from the magnetization current. This term con-
tributes only to the transverse current and it can be written as
jei
mag=c�i,jMz�−� jT /T0�.

Next, we sketch the derivation of the heat current as a
response to a uniform electric field. For this purpose we use

the heat continuity equation, Q̇�r , t�+�jh
con�r , t�= je

conE. The
product je

conE describes the work performed by the electric
field on the current. Since the electric field cannot perform
any work on the magnetization current, only je

con enters to the
RHS of the continuity equation.35 The heat density in the
presence of an electromagnetic field is a function of the mag-
netization and the electrochemical potential,

dQ�r,t� = dh�r,t� − �	 − e!�r��dn�r,t� + MdH�r,t� ,

�A1�

where h�r , t� is the Hamiltonian density. To find the time
derivative of the magnetic field, we turn to the Maxwell

equation Ḣ=−c� �E. Thus, the heat current is described by
the following equation:

�jh = − dh�r,t� + �	 − e!�dn�r,t� − je
con � ! + cM � � E .

�A2�

In Ref. 17 we showed that for H=0 the expression for the
heat current found from the continuity equation is

jh
con�H = 0� = lim

r�→r

t�→t

��t + ie!�r� − �t� + ie!�r���

�	 dr1dt1�v̂
=

�r,t;r1,t1�Ĝ
=

�r1,t1;r�,t���� + H.c.

�A3�

This result was obtained for the Coulomb interaction but it
also holds for the superconducting fluctuations because, un-
like the charge, there is no principle difference between the
way the fluctuations in the density and Cooper channels
carry heat. Here, we use the fact that in the presence of an
interaction field, such as , which does not have its own
dynamics, the heat current can be formulated in terms of the
quasiparticle Green’s function alone. This is compatible with
the observation that according to the kinetic equation given

in Eq. �23�, the temperature gradient is coupled to L̂
=

only
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through the quasiparticle Green’s functions inside �̂
=

. �When
interactions with dynamic fields such as phonons are studied
the heat current acquires additional terms.�

Although we restrict our derivation to the regime of linear
response with respect to the electric field, the source term
je

conE is still important. This is because the source term
makes the heat current to be gauge invariant as Eq. �A3�
reveals. In principle, there may be an additional contribution
to the heat current from the charge current carried by the
superconducting fluctuations �corresponding to the RHS of
Eq. �29��. This issue is not addressed here because such con-
tributions are beyond the linear response.

When we consider the effect of applying a magnetic field
the expression for the heat current given in Eq. �A3� has to
be modified. The first change is simply to include the vector
potential in the velocity as it is shown in Eq. �22�. We denote
the contribution from the heat current given in Eq. �A3� with
the modified velocity as jh

con1. Besides, there is an additional
contribution to the heat current, jh

con2, from the last term in
Eq. �A1� that contains the magnetization,

�jh
con2 = cM�� � E� = c � �E � M� . �A4�

Here we used the fact that under the condition of a constant
magnetic field ��M=0. For a setup similar to the Nernst
measurement �see Fig. 1� in which the magnetic field is
aligned along the z directions, the contribution of the mag-
netization to the heat current is

jh i
con2 = c�ijEjMz. �A5�

At this stage, one may wonder whether there is a contribu-
tion to the transverse current that cannot be found from the
continuity equation, i.e., a term of the form ��W. In the
case of the electric current generated by the temperature gra-
dient, we saw the term of this kind is the magnetization
current. This term does not vanish and contributes to the
transport electric current because the nonuniform tempera-
ture induces a coordinate dependent magnetization �see Sec.
VI�. However, in the presence of a constant electric field, the
system remains uniform. Therefore, the quantity that we de-
noted by W should be independent of the spatial coordinate
and, hence, ��W=0.

Let us compare between the electric current as a response
to a temperature gradient and the heat current generated by
an electric field when a magnetic field is applied. One may
immediately notice that jh

con2 and je
mag �given in Eqs. �A5�

and �53�, respectively� satisfy the Onsager relations,

jh i
con2�H�

Ej
= T0

je j
mag�− H�

− �iT
. �A6�

It is interesting that these two terms coincide although they
seem to have a different origin. The contribution of the mag-
netization, ��M, to the electric current cannot be found
from the continuity equation and it is nonzero due to the

dependence of Ĝloc-eq on the center-of-mass coordinate.
When the response to a uniform electric field is considered,
the Green’s functions are independent of the center-of-mass
coordinate. Still, there is an equivalent contribution to the

heat current arising from the continuity equation.
Now, we show that je

con and jh
con1 also satisfy the Onsager

relations. In order to find jh
con1 we need to know the expres-

sion for the electric field-dependent propagators. The electric
field-dependent Green’s function can be written in the fol-
lowing form:17

ĜE��,�;A, imp� = ĝeq����̂E���ĝeq���

−
ieE

2
� � ĝeq���

��
v̂eq���ĝeq��� − ĝeq���v̂eq���

� ĝeq���
��

 .

�A7�

The above equation is similar to Eq. �21� for Ĝ�T. Since �̂E
contains also the electric field-dependent propagator of the
superconducting fluctuations, we have to find the equation

for L̂E. Owing to the fact that the superconducting fluctua-
tions carry charge, their coupling to the electric field is more
complicated than their dependence on the temperature gradi-
ent described in Eqs. �26� and �27�,

L̂E��,
;A, imp� = − L̂eq�
��̂E�
�L̂eq�
�

+ ieE� �L̂eq�
�
�


V̂eq�
�L̂eq�
�

− L̂eq�
�V̂eq�
�
�L̂eq�
�

�

 . �A8�

Inserting the expression for ĜE into Eq. �A3� and extracting
the lesser component, we get

jh i
con1 =

eEj

2
	 d�

2�
�
�nF���

��
�vi

R���geq
R ���v j

A���geq
A ���

+ vi
R���geq

R ���v j
R���geq

A ��� − vi
R���geq

R ���v j
R���geq

R ���

− geq
R ���v j

R���geq
R ���vi

A���� + eEj	 d�

2�
�nF���

��vi
R���

�geq
R ���
��

v j
R���geq

R ���

− vi
R���geq

R ���v j
R���

�geq
R ���
��

 + i	 d�

2�
�vi

R���geq
R ���

���E
�����1 − nF���� + �E

����nF�����geq
R ��� − geq

A ����

+ c.c. �A9�

The fulfillment of Onsager relation demands microscopic re-

versibility, which in our case implies that Ĝ�r ,r� ,� ;H�
= Ĝ�r� ,r ,� ;−H� and L̂�r ,r� ,� ;H�= L̂�r� ,r ,� ;−H�. Since the
currents contain a trace over the coordinates, it is obvious
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that the first two terms in Eq. �A9� and the first two terms in
Eq. �38� are connected through the Onsager relations.

Let us examine the remaining terms in je
con and jh

con1. The

electric current contains not only the contribution of �̂�T but

also terms with �̂�T while the remaining part of the heat

current contains only �̂E. Actually, when we treat �̂E we

must consider the possibility that E enters also through L̂.

Then, as we show later, since the equation for L̂E includes

more terms than the equation for L̂�T �see Eqs. �A8� and
�27��, the corresponding contributions to the electric and heat
currents coincide.

Let us start with the contributions to the currents in which

�̂ depends on the electric filed/temperature gradient through

Ĝ rather than L̂. Since we are interested in the effect of
Gaussian fluctuations, we can use the expressions for the GE
and G�T in the absence of interactions,

GF
���� =

i

2
Fj���nF���� �g0

R���
��

v0
j g0

R��� − g0
R���v0

j �g0
R���
��


+

i

2
Fj���

�nF���
��

g0
R���v0

j �g0
A��� − g0

R���� − c.c.,

�A10�

where Fj��� is equal to eEj and �� jT /T0, respectively. The
only difference between the above equation for the lesser

component of ĜF and the one for the greater component is
that in the latter the distribution function, nF��� should be
replaced by nF���−1. �In Eq. �A10� and below we start to
place the spatial direction indices also as superscripts.�

Using the identities given in Eq. �50�, one may notice that
for the discussed contributions to the currents �denoted as

je,h�ĜF ,H�� only the terms proportional to the derivative of
the distribution function in Eq. �A10� do not vanish. As a
result we get

je/h
i �ĜF,H� = −

i

2
	 d�d


�2��2dr2 ¯ dr6fe/h���Fj�
 − ��v0
i �r6,r1�

��g0
R�r1,r2,�� − g0

A�r1,r2,����Leq
R �r2,r5,
�

− Leq
A �r2,r5,
��v0

j �r4,r3��g0
R�r5,r4,
 − ��

− g0
A�r5,r4,
 − ����g0

R�r3,r2,
 − ��

− g0
A�r3,r2,
 − ����g0

R�r6,r1,��

− g0
A�r6,r1,���

�nP�
�
�


�nF�� − 
� − nF���� .

�A11�

Here, fe���=−e and fh���=�. The diagrammatic representa-
tion of the above expression is presented in Fig. 12. Recall
that the bare velocity v0�r ,r�����r−r��. Finally, we shall
change the frequency as follows �→
−�,

je/h
i �ĜF,H� = −

i

2
	 d�d


�2��2dr2 ¯ dr6fe/h�
 − ��Fj���v0
i �r6,r1�

��g0
R�r1,r2,
 − �� − g0

A�r1,r2,
 − ���

��Leq
R �r2,r5,
� − Leq

A �r2,r5,
��v0
j �r4,r3�

��g0
R�r5,r4,�� − g0

A�r5,r4,����g0
R�r3,r2,��

− g0
A�r3,r2,����g0

R�r6,r1,
 − ��

− g0
A�r6,r1,
 − ���

�nP�
�
�


�nF�� − 
� − nF���� .

�A12�

the condition of microscopic reversibility mentioned previ-
ously, we see that the electric current created by a tempera-
ture gradient as given in Eq. �A11� �with fe���=−e and
Fj�
−��= �
−��� jT /T0� and the heat current generated by
an electric field as described in Eq. �A12� �with fh�
−��
=
−� and Fj���=Ej� satisfy the Onsager relations. Thus, the
microscopic reversibility and the Onsager relations emerging
from it correspond to reading the diagram in Fig. 12 from
right to left instead of left to right �i.e., reading it in Hebrew
instead of English�.

Next, we shall examine the contribution to the currents in
which the propagator of the superconducting fluctuations �or
the polarization operator� depends on the electric field/
temperature gradient. We start with the corresponding contri-
bution to the heat current as a response to an electric field,
jh�LE ,H�. Using the identities for the distribution functions
in Eq. �50�, this term can be written as

jh
i �LE,H� =	 d�d


�2��2dr2 ¯ dr4�v0
i �r4,r1��nF��� − nF�� − 
��

��geq
A �r1,r2,�� − geq

R �r1,r2,����geq
A �r3,r4,��

− geq
R �r3,r4,����geq

A �r3,r2,
�� − geq
R �r3,r2,
 − ���

���1 + nP�
��LE
��r2,r3,
� − nP�
�LE

��r2,r3,
�� .

�A13�

Using the definition of �̂�T, one may notice that the expres-
sion for the heat current can be rewritten in the form

ε ω−ε

ε ω−ε

v ( , )i 1r6r

2r

5r

v ( , )j 3r4r

FIG. 12. A diagrammatic representation of the contribution to
the current written in Eq. �A11�. For simplicity the scattering by
impurities is not indicated.
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jh
i �LE,H� =

T0

�iT
	 d


2�
dr�� �nP�
�

�

−1

���iT
� �r�,r,
�

��1 + nP�
�� − ��iT
� �r�,r,
�nP�
��

���1 + nP�
��LEj

��r,r�,
� − nP�
�LEj

��r,r�,
�� .

�A14�

Let us now turn to the equivalent contributions to the
electric current created by a temperature gradient, je�L�T ,H�.
Performing manipulations similar to those in the expression
for the heat current we get

je
j�L�T,H� = − ie	 d


2�
dr2 ¯ dr4��Leq

R �r3,r4,
�

− Leq
A �r3,r4,
��V j

R�r4,r1,
�Leq�r1,r2,
�

− Leq
A �r3,r4,
�V j

A�r4,r1,
��Leq
R �r1,r2,
�

− Leq
A �r1,r2,
�����1 + nP�
����iT

� �r2,r3,
�

− nP�
���iT
� �r2,r3,
��

+ e	 d�d


�2��2dr2 ¯ dr4v0
j �r4,r1��g0

A�r1,r2,��

− g0
R�r1,r2,����g0

A�r3,r2,
 − ��

− g0
R�r3,r2,
 − �����1 + nP�
��L�iT

� �r2,r3,
�

− nP�
�L�iT
� �r2,r3,
���nF��� − nF�� − 
��

��g0
A�r3,r4,�� − g0

R�r3,r4,��� . �A15�

Keeping in mind the definition of the polarization operator,

we may rewrite the second integral in terms of �̂E�
�. Then
we may collect the two contributions into a more compact
expression

je
j�L�T,H� = −

1

Ej
	 d


2�
dr2 ¯ dr4��1 + nP�
����iT

� �r3,r4,
�

− nP�
���iT
� �r3,r4,
��� �nP�
�

�

−1

� 
− ieEj
�nP�
�

�

�Leq

A �r4,r1,
�Vi
A�r1,r2,
�

��Leq
R �r2,r3,
� − Leq

A �r2,r3,
�� − �Leq
R �r4,r1,
�

− Leq
A �r4,r1,
��Vi

R�r1,r2,
�Leq
R �r2,r3,
��

+ Leq
A �r4,r1,
���1 + nP�
���Ej

��r1,r2,
�

− nP�
��Ej

��r1,r2,
��Leq
R �r2,r3,
�� . �A16�

The expression inside the curly brackets in the above equa-
tion can be written as �1+nP�
��LE

��
�−nP�
�LE
��
�. To ob-

tain this identity one should find the lesser and greater com-

ponents of L̂ from Eq. �A8�. A simple calculation reveals that
in this combination of LE

� and LE
� only the terms proportional

to the derivative of the Bose distribution function and those
including �E

�,� �which also contain �nP�
� /�
� give a non-
zero contribution. Once again, if we invert the direction of
the propagation of all the ingredients in Eq. �A16� and also
the direction of the magnetic field we get that the expression
for this last contribution to the electric current becomes

je
j�L�T,− H� = −

1

Ej
	 d


2�
dr�� �nP�
�

�

−1

���iT
� �r�,r,
�

��1 + nP�
�� − ��iT
� �r�,r,
�nP�
��

���1 + nP�
��LEj

��r,r�,
�

− nP�
�LEj

��r,r�,
�� . �A17�

Comparing je
j�L�iT

,−B� given above and jh
i �Ej ,B� presented

in Eq. �A14�, one immediately sees that they are indeed con-
nected by the Onsager relations.

In conclusion, we demonstrated the Onsager relation for
the Gaussian fluctuations of the superconducting order pa-
rameter �i.e., to the leading order in ��F��−1�. The structure of
the expressions for the electric and heat currents, Eqs. �38�
and �A9�, indicates that the same is true for any order. �An
example for a general proof of the Onsager relations is given
in Sec. VI of Ref. 17.�

APPENDIX B: CANCELLATION OF THE
THERMOELECTRIC CURRENT IN THE LIMIT T\0

In this appendix we demonstrate how the contribution to
the transverse component of je

con that does not vanish when
T→0 is canceled by the magnetization current given in Eq.
�53�. From the three terms constituting je

con, which are de-
scribed in Sec. IV, the one that remains at low temperatures,
je

con3, is presented in Eq. �49�. Let us restore the general
expression from which je

con3 originates

r1
r8

r7 r6

r5
r4

r3r2

r1
r12

r11
r10 r9

r8

r7
r6

r5
r4r3r2

vβ vµ rαA (r )µ4 4

vβ vµ rαA (r )µ4 4

(a)

(b)

FIG. 13. �a� The contribution to je
rem �a� before and �b� after

averaging over the disorder.
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je i
con3 =

e� jT

T0
	 d�

2�
dr2 ¯ dr6nF����v0

i �r6,r1�g0
R�r1,r2,���eq

R �r2,r3,��g0
R�r3,r4,��v0

j �r4,r5�g0
R�r5,r6,��

− v0
i �r6,r1�g0

R�r1,r2,��v0
j �r2,r3�g0

R�r3,r4,���eq
R �r4,r5,��g0

R�r5,r6,��� + c.c. �B1�

Here we use the notation v0�r ,r�� for the bare velocity �see Eq. �22� with �̂eq taken to be zero�. Following Refs. 19 and 36 and
recalling that we are interested in the current averaged over the space, we may replace the convolution g0

R���v0g0
R��� in the

above equation with −i�r−r��g0
R�r ,r� ,��. Then, the contribution to the current from je

con3 is

jei
con3 = − i

e� jT

T0
	 d�

2�
dr2 ¯ dr4nF����v0

j �r4,r1�

��r1 − r2�ig0
R�r1,r2,���eq

R �r2,r3,��g0
R�r3,r4,��

− v0
i �r4,r1�

��r1 − r2� jg0
R�r1,r2,���eq

R �r2,r3,��g0
R�r3,r4,��� + c.c.

�B2�

The above expression can be rewritten using the magnetiza-
tion M defined below Eq. �37�,

je i
con3 = − 2i�ij

� jT

T0
cMz lim

�→0
	 d�

2�
geq
� ��,�;A, imp�

+ i�ij
e� jT

2T0
	 d�

2�
dr2 ¯ dr4nF����z�#

��r2 + r3��v0
#�r4,r1�

��g0
R�r1,r2,���eq

R �r2,r3,��g0
R�r3,r4,��

− g0
A�r1,r2,���eq

A �r2,r3,��g0
A�r3,r4,��� . �B3�

Obviously, when we add the magnetization current presented
in Eq. �52� to je

con3, only the second term in Eq. �B3� remains.
We shall denote this remaining term as je

rem.

Next, we replace �eq with its explicit expression given in
Eq. �39�,

je i
rem = �ij

e� jT

2T0
	 d�d


�2��2dr2 ¯ dr4nP�
��z�#�r2 + r3��

� v0
#�r4,r1�g0

R�r1,r2,��g0
A�r3,r2,
��g0

R�r3,r4,��

� �LR�r2,r3,
�nF�� − 
� − LA�r2,r3,
�nF���� + c.c.

�B4�

Here, we dropped terms with three retarded �advanced� qua-
siparticles Green’s functions and we used the identities for
the products of distribution functions presented in Eq. �50�.
We show now that je

rem contributes to the current only at
finite temperature, je

rem→0 in the limit T→0. We demon-
strate that je

rem is closely related to the contribution of the
Aslamazov-Larkin diagram to the magnetic susceptibility.37

To calculate je
rem, we allow the magnetic field to depend on

the coordinate; in the end of the derivation we shall take the
limit of a uniform magnetic field.

Let us first concentrate on the product �r
+r��LR,A�r ,r� ,
�. Since the magnetic field varies in space,
the dependence of the propagator L on the center-of-mass
coordinate is through the magnetic field. The result of acting
with the operator R� on L�R ;� ,
� is equal to the derivative
with respect to the vector potential A#�r� multiplied by
r�A#�r�,

�r + r���LR�r,r�,
� = − 4i
e

c
	 d��

2�
dr1dr2dr3 tanh�
 − ��

2T
�LR�r,r1,
�v0

#�r2,r3�r2
�A#�r2�g0

R�r1,r2,���g0
R�r3,r4,���

�g0
A�r1,r4,
 − ���LR�r4,r�,
� . �B5�

Now, we may return to the limit of a constant magnetic field, H�r�=Hẑ, and set the vector potential to be A�r�=H�r�
�r /2. Inserting the expression given in Eq. �B5� into jei

rem presented in Eq. �B4�, we obtain

je i
rem = − i�ij

e2� jT

T0c
	 d�d��d


�2��3 dr2 ¯ dr8nP�
�tanh�
 − ��

2T
��z�#v0

#�r8,r1�v0
	�r4,r5�r4

��z�	H�r4�r4
�g0

R�r1,r2,��

�g0
A�r3,r2,
 − ��g0

R�r3,r4,���LR�r2,r3,
�g0
R�r3,r4,���g0

R�r5,r6,���g0
A�r3,r6,
 − ���LR�r6,r7,
�nF�� − 
�

+ LA�r3,r2,
�g0
A�r3,r4,���g0

A�r5,r6,���g0
R�r3,r6,
 − ���LA�r6,r7,
�nF���� + c.c. �B6�

The diagrammatic interpretation of the above expression is
presented in Fig. 13�a�. Unlike the superconducting fluctua-
tions, the electrons are considered to be three dimensional.
Then, for an isotropic system we may rewrite the product of
the antisymmetric tensors as: �z�#�z�	= ���,��	,#

−��,#�	,�� /3. Now we average over the disorder �see Fig.

13�b�� and represent all the propagators �Green’s functions,
propagators of the superconducting fluctuations and Cooper-
ons� as a product of the phases and the gauge-invariant
terms. All the phases are collected into the function ei$. After
performing the Fourier transform, the equation for je i

rem be-
comes
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je i
rem = − i�ij

e2� jT

3T0c
���,��	,# − ��,#�	,��	 d�d��d


�2��3

dkdk�dqdQ

�2��4d nP�
�tanh�
 − ��

2T
�ei$ �2H�Q�

�Q� � Q� g̃0
R�k,��ṽ0

#�k,k + Q�

�g̃0
R�k + Q,��g̃0

A�q − k,
 − ���C̃R�q + Q,�,
 − ��L̃R�q + Q,
�C̃R�q + Q,��,
 − ���g̃0
R�k� + Q,���ṽ0

	�k� + Q,k��

�g̃0
R�k�,���g̃A�q − k�,
 − ���C̃R�q,��,
 − ���L̃R�q,
�C̃R�q,�,
 − ��nF�� − 
� + C̃R�q + Q,�,
 − ��L̃A�q + Q,
�

�C̃A�q + Q,��,
 − ���g̃0
A�k� + Q,���ṽ0

	�k� + Q,k��g̃0
A�k�,���g̃0

R�q − k�,
 − ���C̃A�q,��,
 − ���L̃A�q,
�

�C̃R�q,�,
 − ��nF���� + c.c. �B7�

Here, H�Q�= �2��dH��Q�ẑ and v0�k� ,k�= � k
2m − i eH

c �
��

�k

+ k�
2m + i eH

c �
��

�k�
� is the Fourier transform of the velocity; the

arrows above the derivatives indicate on which of the
Green’s functions the derivative acts.

Let us transfer the derivatives with respect to the momen-
tum Q from the magnetic field to the rest of the expression
using integration by parts. Since $ which collects all the
phases contains only derivatives with respect to the mo-
menta, it will not be differentiated in the course of this op-

eration. In the diffusive limit, the main contribution to the
current is obtained when the derivatives with respect to Q act
on the propagators of the collective modes, either L or C
�here we rely on the arguments given below Eq. �44��. More-
over, it follows from the tensor structure of Eq. �B7� that
only terms in which �2 /�Q��Q�=2��,�� /�Q2 survive. �One
should keep in mind that the gauge-invariant propagators of
the superconducting fluctuations and Cooperons depend on
the square of the momentum.� Then, je i

rem can be written as

je i
rem = − 2i�ij

e2� jT

3T0c
H	 d�d��d


�2��3

dkdk�dq

�2��3d nP�
�tanh�
 − ��

2T
�ei$g̃0

R�k,��ṽ0
#�k,k�g̃0

R�k,��g̃0
A�q − k,
 − ��
 �

�q2

��C̃R�q,�,
 − ��L̃R�q,
�C̃R�q,��,
 − ����g̃0
R�k�,���ṽ0

	�k�,k��g̃0
R�k�,���g̃0

A�q − k�,
 − ���C̃R�q,��,
 − ���L̃R�q,
�

�C̃0
R�q,�,
 − ��nF�� − 
� +

�

�q2 �C̃R�q,�,
 − ��L̃A�q,
�C̃A�q,��,
 − ����g̃0
A�k�,���ṽ0

	�k�,k��g̃0
A�k�,���g̃0

R�q − k�,
 − ���

�C̃A�q,��,
 − ���L̃A�q,
�C̃R�q,�,
 − ��nF���� + c.c. �B8�

The next step is to integrate over the electronic degrees of freedom and to transform to the basis of the Landau levels. This
can be performed following the explanation presented in Sec. IV. The only difference is in the matrix elements for the Landau
levels. While in the calculation presented in the main text the matrix element is �N ,0�VxVy�M ,0�, here we have �N ,0�Vx

2

+Vy
2�M ,0�=4D2��N+1��N,M−1+ �M +1��M,N−1� /�H

2 . Finally, after replacing the derivative with respect to q2 with a derivative
with respect to the index of the Landau levels, the expression for je i

rem acquires the form

je i
rem = − 4i�

�2D2

3�H
4 �4�ij

e� jT

T0
	 d�d
d��

�2��3 �
N

�N + 1�tanh�
 − ��

2T
�np�
�

�

�N
�nF�� − 
�

�CN
R��,
 − ��LN

R�
�CN
R���,
 − ���CN+1

R ���,
 − ���LN+1
R �
�CN+1

R ��,
 − �� + nF���

�CN
R��,
 − ��LN

A�
�CN
A���,
 − ���CN+1

R ���,
 − ���LN+1
A �
�CN+1

A ��,
 − ��� + c.c. �B9�

To recognize that the above expression goes to zero in the limit T→0, we have to integrate over the fermionic frequencies �
and ��,

je i
rem =

i

24�2�
2�ij

e� jT

T0
	 d
�

N

�N + 1�np�
�

�
�

�N
LN

R�
�LN+1
R �
�
�N

R�1

2
−

i


4�T0
+
�C�N + 1/2�

4�T0
� − �N

R�1

2
−

i


4�T0
+
�C�N + 3/2�

4�T0
��2

+ c.c. �B10�
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now, we can exploit the fact that in the expression differen-
tiated with respect to N the argument N stands together with
the frequency, −i
+�cN. Replacing the derivative � /�N by
a derivative with respect to the frequency and integrating by
parts, one immediately gets that the above integral includes
the factor �nP�
� /�
 and, hence, vanishes at zero tempera-
ture.

To summaries, we showed that in accordance with the
third law of thermodynamics, the transverse thermoelectric
transport coefficients �xy and �̃xy go to zero in the limit T
→0. �As to the longitudinal coefficients, both je

con3 and je
mag

do not appear while the remaining contributions vanish inde-
pendently at T→0.� It follows from this result that at finite
T, one can obtain the temperature dependence of the thermo-
electric current by substituting nP�
� with nP�
�+%�−
� in
all the expressions determining je

con and je
mag.

APPENDIX C: THE QUASIPARTICLES CONTRIBUTION
TO THE THERMOELECTRIC TRANSPORT

COEFFICIENTS

In this appendix we discuss the role of the particle-hole
asymmetry and the constant density-of-states approximation
in determining the quasiparticles contribution to the thermo-
electric transport coefficients. In metallic conductors the qua-
siparticle excitations yield a negligible contribution to the
Nernst effect and to its counterpart, the Ettingshausen effect.
Let us consider a system with an electron and hole conduct-
ing bands that have a particle-hole symmetry, i.e., the bands
are identical and the two species of particles differ only in
their charge. We shall describe the deviation of the distribu-
tion functions of the two species ��fe and �fh� from their
equilibrium value in the linear response to a temperature gra-
dient. For that we write the classical Boltzmann equation in
the relaxation-time approximation,

�fe,h��k�
�

=
� f0��k�

�T
vk � T �

evk � H

c

� f0��k�
�k

. �C1�

Here the equilibrium �Fermi-Dirac� distribution function is
denoted by f0��k� and vk is the velocity of the particles.

The electric current is the sum of the electric currents due
to the electrons and the holes,

je
total = − 2e	 dk

�2��dvk�fe��k� + 2e	 dk

�2��dvk�fh��k� .

�C2�

Notice that the factor-of-2 results from the sum over the two
spin directions. For simplicity we only examine the limit of
vanishingly small magnetic field. In order to determine
whether a current vanishes in the particle-hole symmetric
system we just need to count the powers of the electric
charge; an odd power means cancellation of the two contri-
butions to the current.

We start from the longitudinal electric current induced by
the temperature gradient. In the limit H→0, the longitudinal
current is independent of the magnetic field,

je
x = 2e	 dk

�2��d

� f0��k�
��k

��kDe − �kDh�
�xT

T0
= 0, �C3�

where De=Dh�D=vk
2� /d with d the dimension of the sys-

tem. Since the expression includes only one power of the
charge, there is no longitudinal electric current unless
particle-hole asymmetry is introduced.

The transverse current is obtained when the Lorentz force
in the Boltzmann equation acts on the distribution function.
Therefore, the expression for the transverse current contains
an additional power of the charge,

je
y = 2e	 dk

�2��d

� f0��k�
��k

�kD�
c� − �− 
c���
�xT

T0
� 0.

�C4�

The additional charge enters through the cyclotron frequency

c=eH /m�c. The even power of the charge means that the
particle-hole symmetry does not constrain the Nernst effect.

Now, we look at the contribution for the transverse elec-
tric current in a metal with only one conducting band. We
use the approximate of a constant density of states which is
standard for Fermi-liquid systems. this approximation the ex-
pression for the transverse current is

je
y = 2e�0D�
c��

�T

T0
	 d�k

� f0��k�
��k

�k. �C5�

Since near the Fermi energy the integrand is an odd function
of the energy, the resulting current is zero. Therefore, under
the approximation of a constant density of states at the Fermi
energy this contribution vanishes.10 One may conclude that
in metallic systems with high Fermi energy the contribution
of the quasiparticles to the Nernst signal includes a small
factor related to the deviation from the constant density of
states which is of the order T /�F. In semimetals such as Bi
where the constant density-of-states approximation cannot be
used, a large Nernst signal was measured.38

Let us compare the magnitudes of the transverse Peltier
coefficient generated by the quasiparticles and by the super-
conducting fluctuations in a film of thickness a. The first is
of the order ��
c��e�DaT /�F for 
c��1 while the second
one is of the order �e�c /T for �c /T�1 and �eT /�c for
the opposite limit. Thus in the limit of vanishing small mag-
netic field the ratio between the contribution of the quasipar-
ticles and the fluctuations is �xy

qp /�xy
fl ��kFa�T2� /�F. At

higher magnetic fields �but still in the limit 
c��1� this ratio
becomes �xy

qp /�xy
fl ��kFa��F��
c��2�1. the condition of the

experiment,5,6 the ratio �xy
qp /�xy

fl �1 up to T&100Tc and H
&100Hc2

. The reason why the Nernst signal generated by the
superconducting fluctuations dominates the one produced by
the quasiparticles was explained in the end of Sec. IV.
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